BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bashir S, Hina M, Iqbal J, Rajpar AH, Mujtaba MA, Alghamdi NA, Wageh S, Ramesh K, Ramesh S. Fundamental Concepts of Hydrogels: Synthesis, Properties, and Their Applications. Polymers (Basel) 2020;12:E2702. [PMID: 33207715 DOI: 10.3390/polym12112702] [Cited by in Crossref: 21] [Cited by in F6Publishing: 13] [Article Influence: 10.5] [Reference Citation Analysis]
Number Citing Articles
1 Bashir S, Hasan K, Hina M, Ali Soomro R, Mujtaba M, Ramesh S, Ramesh K, Duraisamy N, Manikam R. Conducting polymer/graphene hydrogel electrodes based aqueous smart Supercapacitors: A review and future prospects. Journal of Electroanalytical Chemistry 2021;898:115626. [DOI: 10.1016/j.jelechem.2021.115626] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
2 Engin Pazarçeviren A, Akbaba S, Tezcaner A, Keskin D, Evis Z. Seamless and robust alginate/gelatin coating on Ti-6Al-4V as a gap filling interphase. Applied Surface Science 2022;581:152393. [DOI: 10.1016/j.apsusc.2021.152393] [Reference Citation Analysis]
3 Liu Y, Luo Y, Zhang P, Yang W, Zhang C, Yin Y. The Preparation of Novel P(OEGMA-co-MEO2MA) Microgels-Based Thermosensitive Hydrogel and Its Application in Three-Dimensional Cell Scaffold. Gels 2022;8:313. [DOI: 10.3390/gels8050313] [Reference Citation Analysis]
4 Zafar S, Hanif M, Azeem M, Mahmood K, Gondal SA. Role of crosslinkers for synthesizing biocompatible, biodegradable and mechanically strong hydrogels with desired release profile. Polym Bull . [DOI: 10.1007/s00289-021-03956-8] [Reference Citation Analysis]
5 Rafidi N, Bashir S, Hina M, Gunalan S, Ramesh S, Ramesh K. Renewable and soft dynamic supercapacitors based on poly (acrylamide) hydrogel electrolytes and porous carbon electrodes. Polym Bull . [DOI: 10.1007/s00289-021-04032-x] [Reference Citation Analysis]
6 Park S, Kim YJ, Park S, Hong H, Lee J, Kim SI, Lee K, Ryu W. Rapid Extraction and Detection of Biomolecules via a Microneedle Array of Wet‐Crosslinked Methacrylated Hyaluronic Acid. Adv Materials Technologies 2022;7:2100874. [DOI: 10.1002/admt.202100874] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Rafael D, Melendres MMR, Andrade F, Montero S, Martinez-Trucharte F, Vilar-Hernandez M, Durán-Lara EF, Schwartz S Jr, Abasolo I. Thermo-responsive hydrogels for cancer local therapy: Challenges and state-of-art. Int J Pharm 2021;606:120954. [PMID: 34332061 DOI: 10.1016/j.ijpharm.2021.120954] [Reference Citation Analysis]
8 Muhammad A, Lee D, Shin Y, Park J. Recent Progress in Polysaccharide Aerogels: Their Synthesis, Application, and Future Outlook. Polymers (Basel) 2021;13:1347. [PMID: 33924110 DOI: 10.3390/polym13081347] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
9 Stanković B. The kinetics analyses of isothermal dehydration of PDMAA hydrogel by application of dispersive kinetics model. J Therm Anal Calorim. [DOI: 10.1007/s10973-022-11212-y] [Reference Citation Analysis]
10 Zare M, Bigham A, Zare M, Luo H, Rezvani Ghomi E, Ramakrishna S. pHEMA: An Overview for Biomedical Applications. Int J Mol Sci 2021;22:6376. [PMID: 34203608 DOI: 10.3390/ijms22126376] [Reference Citation Analysis]
11 Subramanian K, Logaraj H, Ramesh V, Mani M, Balakrishnan K, Selvaraj H, Pugazhvendan SR, Velmurugan S, Aruni W, Ponmurugan K. Intelligent pH Indicative Film from Plant-Based Extract for Active Biodegradable Smart Food Packing. Journal of Nanomaterials 2022;2022:1-8. [DOI: 10.1155/2022/4482114] [Reference Citation Analysis]
12 Virk K, Sharma K, Kapil S, Kumar V, Sharma V, Pandey S, Kumar V. Synthesis of gum acacia-silver nanoparticles based hydrogel composites and their comparative anti-bacterial activity. J Polym Res 2022;29. [DOI: 10.1007/s10965-022-02978-8] [Reference Citation Analysis]
13 Işıkver Y, Saraydın D. Smart Hydrogels: Preparation, Characterization, and Determination of Transition Points of Crosslinked N-Isopropyl Acrylamide/Acrylamide/Carboxylic Acids Polymers. Gels 2021;7:113. [PMID: 34449617 DOI: 10.3390/gels7030113] [Reference Citation Analysis]
14 Manzoor A, Dar AH, Pandey VK, Shams R, Khan S, Panesar PS, Kennedy JF, Fayaz U, Khan SA. Recent insights into polysaccharide-based hydrogels and their potential applications in food sector: A review. Int J Biol Macromol 2022;213:987-1006. [PMID: 35705126 DOI: 10.1016/j.ijbiomac.2022.06.044] [Reference Citation Analysis]
15 Brumberg V, Astrelina T, Malivanova T, Samoilov A. Modern Wound Dressings: Hydrogel Dressings. Biomedicines 2021;9:1235. [PMID: 34572421 DOI: 10.3390/biomedicines9091235] [Reference Citation Analysis]
16 Rodrigues Sousa H, Lima IS, Neris LML, Silva AS, Santos Nascimento AMS, Araújo FP, Ratke RF, Silva DA, Osajima JA, Bezerra LR, Silva-Filho EC. Superabsorbent Hydrogels Based to Polyacrylamide/Cashew Tree Gum for the Controlled Release of Water and Plant Nutrients. Molecules 2021;26:2680. [PMID: 34063701 DOI: 10.3390/molecules26092680] [Reference Citation Analysis]
17 Darban Z, Shahabuddin S, Gaur R, Ahmad I, Sridewi N. Hydrogel-Based Adsorbent Material for the Effective Removal of Heavy Metals from Wastewater: A Comprehensive Review. Gels 2022;8:263. [DOI: 10.3390/gels8050263] [Reference Citation Analysis]
18 Aoyama S, Nakagawa R, Mulé JJ, Mailloux AW. Inducible Tertiary Lymphoid Structures: Promise and Challenges for Translating a New Class of Immunotherapy. Front Immunol 2021;12:675538. [PMID: 34054863 DOI: 10.3389/fimmu.2021.675538] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Phan VG, Murugesan M, Manivasagan P, Nguyen TL, Phan T, Luu CH, Ho D, Li Y, Kim J, Lee DS, Thambi T. Injectable Hydrogel Based on Protein-Polyester Microporous Network as an Implantable Niche for Active Cell Recruitment. Pharmaceutics 2022;14:709. [DOI: 10.3390/pharmaceutics14040709] [Reference Citation Analysis]
20 Yang X, Dargaville BL, Hutmacher DW. Elucidating the Molecular Mechanisms for the Interaction of Water with Polyethylene Glycol-Based Hydrogels: Influence of Ionic Strength and Gel Network Structure. Polymers (Basel) 2021;13:845. [PMID: 33801863 DOI: 10.3390/polym13060845] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Tan C, Hosseini SF, Jafari SM. Cubosomes and Hexosomes as Novel Nanocarriers for Bioactive Compounds. J Agric Food Chem 2022. [PMID: 35089018 DOI: 10.1021/acs.jafc.1c06747] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
22 Pierau L, Versace DL. Light and Hydrogels: A New Generation of Antimicrobial Materials. Materials (Basel) 2021;14:787. [PMID: 33562335 DOI: 10.3390/ma14040787] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Bashir S, Hina M, Iqbal J, Jafer R, Ramesh S, Ramesh K. Self-healable poly (N, N-dimethylacrylamide)/poly (3,4-ethylenedioxythiophene) polystyrene sulfonate composite hydrogel electrolytes for aqueous supercapacitors. Journal of Energy Storage 2022;45:103760. [DOI: 10.1016/j.est.2021.103760] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
24 Gorshkova MY, Vanchugova LV, Volkova IF, Obydennova IV, Valuev IL, Valuev LI. Novel mucoadhesive carriers based on alginate-acrylamide hydrogels for drug delivery. Mendeleev Communications 2022;32:189-91. [DOI: 10.1016/j.mencom.2022.03.012] [Reference Citation Analysis]
25 Karthik V, Senthil Kumar P, Vo DN, Selvakumar P, Gokulakrishnan M, Keerthana P, Audilakshmi V, Jeyanthi J. Enzyme-loaded nanoparticles for the degradation of wastewater contaminants: a review. Environ Chem Lett 2021;19:2331-50. [DOI: 10.1007/s10311-020-01158-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
26 Ahmad Z, Salman S, Khan SA, Amin A, Rahman ZU, Al-ghamdi YO, Akhtar K, Bakhsh EM, Khan SB. Versatility of Hydrogels: From Synthetic Strategies, Classification, and Properties to Biomedical Applications. Gels 2022;8:167. [DOI: 10.3390/gels8030167] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
27 Mondal MIH, Haque MO, Ahmed F, Pervez MN, Naddeo V, Ahmed MB. Super-Adsorptive Biodegradable Hydrogel from Simply Treated Sugarcane Bagasse. Gels 2022;8:177. [DOI: 10.3390/gels8030177] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Bami MS, Raeisi Estabragh MA, Khazaeli P, Ohadi M, Dehghannoudeh G. pH-responsive drug delivery systems as intelligent carriers for targeted drug therapy: Brief history, properties, synthesis, mechanism and application. Journal of Drug Delivery Science and Technology 2021. [DOI: 10.1016/j.jddst.2021.102987] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Sanaei Moghaddam Sabzevar Z, Mehrshad M, Naimipour M. A biological magnetic nano-hydrogel based on basil seed mucilage: study of swelling ratio and drug delivery. Iran Polym J 2021;30:485-93. [DOI: 10.1007/s13726-021-00905-0] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
30 Abou Taleb MF, Abou El Fadl FI, Albalwi H. Adsorption of toxic dye in wastewater onto magnetic NVP/CS nanocomposite hydrogels synthesized using gamma radiation. Separation and Purification Technology 2021;266:118551. [DOI: 10.1016/j.seppur.2021.118551] [Cited by in Crossref: 11] [Cited by in F6Publishing: 6] [Article Influence: 11.0] [Reference Citation Analysis]
31 Ebrahimi R. Radiation initiated synthesis, characterization, and swelling behavior of poly (acrylic acid‐co‐acrylamide)/starch grafted hydrogel. J Appl Polym Sci 2021;138:50931. [DOI: 10.1002/app.50931] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
32 Popov S, Paderin N, Khramova D, Kvashninova E, Patova O, Vityazev F. Swelling, Protein Adsorption, and Biocompatibility In Vitro of Gel Beads Prepared from Pectin of Hogweed Heracleum sosnówskyi Manden in Comparison with Gel Beads from Apple Pectin. Int J Mol Sci 2022;23:3388. [PMID: 35328806 DOI: 10.3390/ijms23063388] [Reference Citation Analysis]
33 Farmanbordar H, Amini-fazl MS, Mohammadi R. Synthesis of core-shell structure based on silica nanoparticles and methacrylic acid via RAFT method: An efficient pH-sensitive hydrogel for prolonging doxorubicin release. Journal of Drug Delivery Science and Technology 2021;66:102896. [DOI: 10.1016/j.jddst.2021.102896] [Reference Citation Analysis]
34 Zawani M, Fauzi MB. Injectable Hydrogels for Chronic Skin Wound Management: A Concise Review. Biomedicines 2021;9:527. [PMID: 34068490 DOI: 10.3390/biomedicines9050527] [Reference Citation Analysis]
35 Alsamman MT, Sánchez J. Recent advances on hydrogels based on chitosan and alginate for the adsorption of dyes and metal ions from water. Arabian Journal of Chemistry 2021;14:103455. [DOI: 10.1016/j.arabjc.2021.103455] [Reference Citation Analysis]
36 Wan-Chiew N, Baki MM, Fauzi MB, Lokanathan Y, Azman M. In Vitro Evaluation of Biomaterials for Vocal Fold Injection: A Systematic Review. Polymers (Basel) 2021;13:2619. [PMID: 34451158 DOI: 10.3390/polym13162619] [Reference Citation Analysis]
37 Shin Y, Kim D, Hu Y, Kim Y, Hong IK, Kim MS, Jung S. pH-Responsive Succinoglycan-Carboxymethyl Cellulose Hydrogels with Highly Improved Mechanical Strength for Controlled Drug Delivery Systems. Polymers (Basel) 2021;13:3197. [PMID: 34578098 DOI: 10.3390/polym13183197] [Reference Citation Analysis]
38 Baral KC, Bajracharya R, Lee SH, Han HK. Advancements in the Pharmaceutical Applications of Probiotics: Dosage Forms and Formulation Technology. Int J Nanomedicine 2021;16:7535-56. [PMID: 34795482 DOI: 10.2147/IJN.S337427] [Reference Citation Analysis]
39 Araújo D, Rodrigues T, Alves VD, Freitas F. Chitin-Glucan Complex Hydrogels: Optimization of Gel Formation and Demonstration of Drug Loading and Release Ability. Polymers 2022;14:785. [DOI: 10.3390/polym14040785] [Reference Citation Analysis]
40 Ho T, Chang C, Chan H, Chung T, Shu C, Chuang K, Duh T, Yang M, Tyan Y. Hydrogels: Properties and Applications in Biomedicine. Molecules 2022;27:2902. [DOI: 10.3390/molecules27092902] [Reference Citation Analysis]
41 Sciabica S, Tafuro G, Semenzato A, Traini D, Silva DM, Reis LGD, Canilli L, Terno M, Durini E, Vertuani S, Baldisserotto A, Manfredini S. Design, Synthesis, Characterization, and In Vitro Evaluation of a New Cross-Linked Hyaluronic Acid for Pharmaceutical and Cosmetic Applications. Pharmaceutics 2021;13:1672. [PMID: 34683965 DOI: 10.3390/pharmaceutics13101672] [Reference Citation Analysis]
42 Kamoun EA, Loutfy SA, Hussein Y, Kenawy ES. Recent advances in PVA-polysaccharide based hydrogels and electrospun nanofibers in biomedical applications: A review. Int J Biol Macromol 2021;187:755-68. [PMID: 34358597 DOI: 10.1016/j.ijbiomac.2021.08.002] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
43 Qureshi D, Pattanaik S, Mohanty B, Anis A, Kulikouskaya V, Hileuskaya K, Agabekov V, Sarkar P, Maji S, Pal K. Preparation of novel poly(vinyl alcohol)/chitosan lactate-based phase-separated composite films for UV-shielding and drug delivery applications. Polym Bull 2022;79:3253-90. [DOI: 10.1007/s00289-021-03653-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
44 Xu T, Liu K, Sheng N, Zhang M, Liu W, Liu H, Dai L, Zhang X, Si C, Du H, Zhang K. Biopolymer-based hydrogel electrolytes for advanced energy storage/conversion devices: Properties, applications, and perspectives. Energy Storage Materials 2022;48:244-62. [DOI: 10.1016/j.ensm.2022.03.013] [Reference Citation Analysis]