BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Goracci M, Pignochino Y, Marchiò S. Phage Display-Based Nanotechnology Applications in Cancer Immunotherapy. Molecules 2020;25:E843. [PMID: 32075083 DOI: 10.3390/molecules25040843] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Sarangi MK, Padhi S, Rath G, Nanda SS, Yi DK. Success of nano-vaccines against COVID-19: A transformation in nanomedicine. Expert Review of Vaccines 2022. [DOI: 10.1080/14760584.2022.2148659] [Reference Citation Analysis]
2 Sinha A, Simnani FZ, Singh D, Nandi A, Choudhury A, Patel P, Jha E, Chouhan RS, Kaushik NK, Mishra YK, Panda PK, Suar M, Verma SK. The translational paradigm of nanobiomaterials: Biological chemistry to modern applications. Mater Today Bio 2022;17:100463. [PMID: 36310541 DOI: 10.1016/j.mtbio.2022.100463] [Reference Citation Analysis]
3 Liyanagedera SBW, Williams J, Wheatley JP, Biketova AY, Hasan M, Sagona AP, Purdy KJ, Puxty RJ, Feher T, Kulkarni V. SpyPhage: A Cell-Free TXTL Platform for Rapid Engineering of Targeted Phage Therapies. ACS Synth Biol 2022. [PMID: 36194543 DOI: 10.1021/acssynbio.2c00244] [Reference Citation Analysis]
4 Khambhati K, Bhattacharjee G, Gohil N, Dhanoa GK, Sagona AP, Mani I, Bui NL, Chu D, Karapurkar JK, Jang SH, Chung HY, Maurya R, Alzahrani KJ, Ramakrishna S, Singh V. Phage engineering and phage‐assisted CRISPR‐Cas delivery to combat multidrug‐resistant pathogens. Bioengineering & Transla Med. [DOI: 10.1002/btm2.10381] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
5 Foglizzo V, Marchiò S. Nanoparticles as Physically- and Biochemically-Tuned Drug Formulations for Cancers Therapy. Cancers (Basel) 2022;14:2473. [PMID: 35626078 DOI: 10.3390/cancers14102473] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Xu J, Yang Q, Wang P, Wu D, Yang X, Chen W, Gao S, Wang S. Self-assembled β-galactosidase on T4 phage capsid through affinity binding with enhanced activity and stability for rapid bacteria detection. Sensors and Actuators B: Chemical 2022;359:131569. [DOI: 10.1016/j.snb.2022.131569] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Shahcheraghi N, Golchin H, Sadri Z, Tabari Y, Borhanifar F, Makani S. Nano-biotechnology, an applicable approach for sustainable future. 3 Biotech 2022;12:65. [PMID: 35186662 DOI: 10.1007/s13205-021-03108-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
8 Volovat S, Ursulescu CL, Moisii LG, Volovat C, Boboc D, Scripcariu D, Amurariti F, Stefanescu C, Stolniceanu CR, Agop M, Lungulescu C, Volovat CC. The Landscape of Nanovectors for Modulation in Cancer Immunotherapy. Pharmaceutics 2022;14:397. [DOI: 10.3390/pharmaceutics14020397] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
9 Lu J, Ding J, Liu Z, Chen T. Retrospective analysis of the preparation and application of immunotherapy in cancer treatment (Review). Int J Oncol 2022;60:12. [PMID: 34981814 DOI: 10.3892/ijo.2022.5302] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Paczesny J, Wdowiak M, Ochirbat E. Bacteriophage-Based Biosensors: Detection of Bacteria and Beyond. Nanotechnology for Infectious Diseases 2022. [DOI: 10.1007/978-981-16-9190-4_20] [Reference Citation Analysis]
11 Veeranarayanan S, Azam AH, Kiga K, Watanabe S, Cui L. Bacteriophages as Solid Tumor Theragnostic Agents. Int J Mol Sci 2021;23:402. [PMID: 35008840 DOI: 10.3390/ijms23010402] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Sa-Nguanmoo N, Namdee K, Khongkow M, Ruktanonchai U, Zhao Y, Liang XJ. Review: Development of SARS-CoV-2 immuno-enhanced COVID-19 vaccines with nano-platform. Nano Res 2021;:1-30. [PMID: 34659650 DOI: 10.1007/s12274-021-3832-y] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
13 Zalewska-Piątek B, Piątek R. Bacteriophages as Potential Tools for Use in Antimicrobial Therapy and Vaccine Development. Pharmaceuticals (Basel) 2021;14:331. [PMID: 33916345 DOI: 10.3390/ph14040331] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
14 Ahmadi A, Ayyadevara VSSA, Baudry J, Roh KH. Calcium signaling on Jurkat T cells induced by microbeads coated with novel peptide ligands specific to human CD3ε. J Mater Chem B 2021;9:1661-75. [PMID: 33481966 DOI: 10.1039/d0tb02235g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
15 de Vries CR, Chen Q, Demirdjian S, Kaber G, Khosravi A, Liu D, Van Belleghem JD, Bollyky PL. Phages in vaccine design and immunity; mechanisms and mysteries. Curr Opin Biotechnol 2021;68:160-5. [PMID: 33316575 DOI: 10.1016/j.copbio.2020.11.002] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
16 Paczesny J, Bielec K. Application of Bacteriophages in Nanotechnology. Nanomaterials (Basel) 2020;10:E1944. [PMID: 33003494 DOI: 10.3390/nano10101944] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 7.5] [Reference Citation Analysis]
17 Brignole C, Pastorino F. Special Issue "Recent Advances in Precision Nanomedicine for Cancer". Molecules 2020;25:E4148. [PMID: 32927825 DOI: 10.3390/molecules25184148] [Reference Citation Analysis]
18 González-Mora A, Hernández-Pérez J, Iqbal HMN, Rito-Palomares M, Benavides J. Bacteriophage-Based Vaccines: A Potent Approach for Antigen Delivery. Vaccines (Basel) 2020;8:E504. [PMID: 32899720 DOI: 10.3390/vaccines8030504] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 9.5] [Reference Citation Analysis]