BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Teixeira JP, de Castro AA, Soares FV, da Cunha EFF, Ramalho TC. Future Therapeutic Perspectives into the Alzheimer's Disease Targeting the Oxidative Stress Hypothesis. Molecules 2019;24:E4410. [PMID: 31816853 DOI: 10.3390/molecules24234410] [Cited by in Crossref: 39] [Cited by in F6Publishing: 41] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Meimei C, Fengzhen W, Huangwei L, Candong L, Zhaoyang Y. Discovery of Taxus chinensis fruit wine as potentially functional food against Alzheimer's disease by UHPLC‐QE‐MS/MS, network pharmacology and molecular docking. Journal of Food Biochemistry 2022. [DOI: 10.1111/jfbc.14502] [Reference Citation Analysis]
2 Cao Y, Yu F, Lyu Y, Lu X. Promising candidates from drug clinical trials: Implications for clinical treatment of Alzheimer's disease in China. Front Neurol 2022;13. [DOI: 10.3389/fneur.2022.1034243] [Reference Citation Analysis]
3 Dutta MS. A study from structural insight to the antiamyloidogenic and antioxidant activities of flavonoids: scaffold for future therapeutics of Alzheimer’s disease. Med Chem Res 2022. [DOI: 10.1007/s00044-022-02990-z] [Reference Citation Analysis]
4 Malik S, Miana G, Ata A, Kanwal M, Maqsood S, Malik I, Kazmi Z. SYNTHESIS, CHARACTERIZATION, IN-SILICO, AND PHARMACOLOGICAL EVALUATION OF NEW 2-AMINO-6-TRIFLUOROMETHOXY BENZOTHIAZOLE DERIVATIVES. Bioorganic Chemistry 2022. [DOI: 10.1016/j.bioorg.2022.106175] [Reference Citation Analysis]
5 Mohamad HE, Abo-Elmatty DM, Wahba NS, Shaheen MA, Sakr RT, Wahba AS. Infliximab and/or MESNA alleviate doxorubicin-induced Alzheimer's disease-like pathology in rats: A new insight into TNF-α/Wnt/β-catenin signaling pathway. Life Sci 2022;:120613. [PMID: 35523286 DOI: 10.1016/j.lfs.2022.120613] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Rosa IA, Gonçalves MA, Krambrock KWH, Dos Santos MH, Braga LS, da Cunha EFF, Ramalho TC. Exploring electronic, structural and dynamics parameters of phenylbenzothiazole complexes with Mn2+, Cu2+ and Zn2+ for designing new magnetic resonance imaging (MRI) probes: congruence between computation and spectroscopic data. J Biomol Struct Dyn 2022;:1-11. [PMID: 35249451 DOI: 10.1080/07391102.2022.2046639] [Reference Citation Analysis]
7 Zhang Y, Yang M, Wang Y, Huang W, Ji M. Lighting up hydrogen peroxide in living cells by a novel quinoxalinamine based fluorescent probe. Spectrochim Acta A Mol Biomol Spectrosc 2022;267:120528. [PMID: 34742156 DOI: 10.1016/j.saa.2021.120528] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
8 Pritam P, Deka R, Bhardwaj A, Srivastava R, Kumar D, Jha AK, Jha NK, Villa C, Jha SK. Antioxidants in Alzheimer's Disease: Current Therapeutic Significance and Future Prospects. Biology (Basel) 2022;11:212. [PMID: 35205079 DOI: 10.3390/biology11020212] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 9.0] [Reference Citation Analysis]
9 Sirwi A, El Sayed NS, Abdallah HM, Ibrahim SRM, Mohamed GA, El-Halawany AM, Safo MK, Abdel Rasheed NO. Umuhengerin Neuroprotective Effects in Streptozotocin-Induced Alzheimer's Disease Mouse Model via Targeting Nrf2 and NF-Kβ Signaling Cascades. Antioxidants (Basel) 2021;10:2011. [PMID: 34943114 DOI: 10.3390/antiox10122011] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Alberto-Silva C, Vieira Portaro FC, Kodama RT, Pantaleão HQ, Inagaki H, Nihei KI, Konno K. Comprehensive Analysis and Biological Characterization of Venom Components from Solitary Scoliid Wasp Campsomeriella annulata annulata. Toxins (Basel) 2021;13:885. [PMID: 34941722 DOI: 10.3390/toxins13120885] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Revdekar A, Shende P. Block copolymers in Alzheimer's disease therapy: A perceptive to revolutionize biomaterials. J Control Release 2021;340:271-81. [PMID: 34763003 DOI: 10.1016/j.jconrel.2021.11.007] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
12 Kundo NK, Manik MIN, Biswas K, Khatun R, Al-Amin MY, Alam AHMK, Tanaka T, Sadik G. Identification of Polyphenolics from Loranthus globosus as Potential Inhibitors of Cholinesterase and Oxidative Stress for Alzheimer's Disease Treatment. Biomed Res Int 2021;2021:9154406. [PMID: 34805409 DOI: 10.1155/2021/9154406] [Reference Citation Analysis]
13 Zhang F, Xu Y, Shen L, Huang J, Xu S, Li J, Sun Z, He J, Chen M, Pan Y. GuanXinNing Tablet Attenuates Alzheimer's Disease via Improving Gut Microbiota, Host Metabolites, and Neuronal Apoptosis in Rabbits. Evid Based Complement Alternat Med 2021;2021:9253281. [PMID: 34745305 DOI: 10.1155/2021/9253281] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Aouadi K, Hajlaoui H, Arraouadi S, Ghannay S, Snoussi M, Kadri A. HPLC/MS Phytochemical Profiling with Antioxidant Activities of Echium humile Desf. Extracts: ADMET Prediction and Computational Study Targeting Human Peroxiredoxin 5 Receptor. Agronomy 2021;11:2165. [DOI: 10.3390/agronomy11112165] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
15 Sameni HR, Vafaei AA, Zarbakhsh S, Talebian A, Aldaghi MR. Effects of Aminoguanidine on Apoptosis in the Hippocampus and Memory Disorder in a Rat Model of Alzheimer’s Disease. Middle East J Rehabil Health Stud 2021;8. [DOI: 10.5812/mejrh.115127] [Reference Citation Analysis]
16 Lee BK, Jee HJ, Jung YS. Aβ1-40-Induced Platelet Adhesion Is Ameliorated by Rosmarinic Acid through Inhibition of NADPH Oxidase/PKC-δ/Integrin αIIbβ3 Signaling. Antioxidants (Basel) 2021;10:1671. [PMID: 34829541 DOI: 10.3390/antiox10111671] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
17 Lee JW, Chun W, Lee HJ, Kim SM, Min JH, Kim DY, Kim MO, Ryu HW, Lee SU. The Role of Microglia in the Development of Neurodegenerative Diseases. Biomedicines 2021;9:1449. [PMID: 34680566 DOI: 10.3390/biomedicines9101449] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
18 Qaid EYA, Long I, Azman KF, Ahmad AH, Othman Z, Sirajudeen K, Ahmi A, Zakaria R. Quantitative description of publications (1986-2020) related to Alzheimer disease and oxidative stress: A bibliometric study. Journal of Cellular Neuroscience and Oxidative Stress 2021;13:971-984. [DOI: 10.37212/jcnos.946898] [Reference Citation Analysis]
19 Juszczyk G, Mikulska J, Kasperek K, Pietrzak D, Mrozek W, Herbet M. Chronic Stress and Oxidative Stress as Common Factors of the Pathogenesis of Depression and Alzheimer's Disease: The Role of Antioxidants in Prevention and Treatment. Antioxidants (Basel) 2021;10:1439. [PMID: 34573069 DOI: 10.3390/antiox10091439] [Cited by in Crossref: 13] [Cited by in F6Publishing: 17] [Article Influence: 13.0] [Reference Citation Analysis]
20 Yang J, Guo Y, Pistolozzi M, Yan J. Research progress of multi-functional fluorescent probes for Alzheimer's disease monitoring. Dyes and Pigments 2021;193:109466. [DOI: 10.1016/j.dyepig.2021.109466] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 12.0] [Reference Citation Analysis]
21 Kou X, Liu J, Chen Y, Yang A, Shen R. Emodin derivatives with multi-factor anti-AD activities: AChE inhibitor, anti-oxidant and metal chelator. Journal of Molecular Structure 2021;1239:130459. [DOI: 10.1016/j.molstruc.2021.130459] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
22 Yun-liang X, Bo Z. Protective Effect of Patchouli Alcohol Against SH-SY5Y Cell Injury Induced by Aβ 25-35 via the Reduction of Oxidative Stress and Apoptosis. Natural Product Communications 2021;16:1934578X2110317. [DOI: 10.1177/1934578x211031715] [Reference Citation Analysis]
23 Abd El-aziz NM, Eldin Awad OM, Shehata MG, El-sohaimy SA. Antioxidant and anti-acetylcholinesterase potential of artichoke phenolic compounds. Food Bioscience 2021;41:101006. [DOI: 10.1016/j.fbio.2021.101006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 9.0] [Reference Citation Analysis]
24 Stanciu GD, Rusu RN, Bild V, Filipiuc LE, Tamba BI, Ababei DC. Systemic Actions of SGLT2 Inhibition on Chronic mTOR Activation as a Shared Pathogenic Mechanism between Alzheimer's Disease and Diabetes. Biomedicines 2021;9:576. [PMID: 34069618 DOI: 10.3390/biomedicines9050576] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
25 Alves SS, Silva-Junior RMPD, Servilha-Menezes G, Homolak J, Šalković-Petrišić M, Garcia-Cairasco N. Insulin Resistance as a Common Link Between Current Alzheimer's Disease Hypotheses. J Alzheimers Dis 2021;82:71-105. [PMID: 34024838 DOI: 10.3233/JAD-210234] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
26 Zaretsky DV, Zaretskaia MV. Mini-review: Amyloid degradation toxicity hypothesis of Alzheimer's disease. Neurosci Lett 2021;756:135959. [PMID: 34000347 DOI: 10.1016/j.neulet.2021.135959] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
27 Serra MC, Dondero KR, Larkins D, Burns A, Addison O. Healthy Lifestyle and Cognition: Interaction between Diet and Physical Activity. Curr Nutr Rep 2020;9:64-74. [PMID: 32166628 DOI: 10.1007/s13668-020-00306-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
28 Meng M, Zhang L, Ai D, Wu H, Peng W. β-Asarone Ameliorates β-Amyloid-Induced Neurotoxicity in PC12 Cells by Activating P13K/Akt/Nrf2 Signaling Pathway. Front Pharmacol 2021;12:659955. [PMID: 34040526 DOI: 10.3389/fphar.2021.659955] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
29 Ahmed S, Khan ST, Zargaham MK, Khan AU, Khan S, Hussain A, Uddin J, Khan A, Al-Harrasi A. Potential therapeutic natural products against Alzheimer's disease with Reference of Acetylcholinesterase. Biomed Pharmacother 2021;139:111609. [PMID: 33915501 DOI: 10.1016/j.biopha.2021.111609] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 17.0] [Reference Citation Analysis]
30 Zhou LC, Liang YF, Huang Y, Yang GX, Zheng LL, Sun JM, Li Y, Zhu FL, Qian HW, Wang R, Ma L. Design, synthesis, and biological evaluation of diosgenin-indole derivatives as dual-functional agents for the treatment of Alzheimer's disease. Eur J Med Chem 2021;219:113426. [PMID: 33848787 DOI: 10.1016/j.ejmech.2021.113426] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 7.0] [Reference Citation Analysis]
31 Liskova A, Samec M, Koklesova L, Kudela E, Kubatka P, Golubnitschaja O. Mitochondriopathies as a Clue to Systemic Disorders-Analytical Tools and Mitigating Measures in Context of Predictive, Preventive, and Personalized (3P) Medicine. Int J Mol Sci 2021;22:2007. [PMID: 33670490 DOI: 10.3390/ijms22042007] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 16.0] [Reference Citation Analysis]
32 Sarkar B, Alam S, Rajib TK, Islam SS, Araf Y, Ullah MA. Identification of the most potent acetylcholinesterase inhibitors from plants for possible treatment of Alzheimer’s disease: a computational approach. Egypt J Med Hum Genet 2021;22. [DOI: 10.1186/s43042-020-00127-8] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
33 Song Y, Wang X, Wang X, Wang J, Hao Q, Hao J, Hou X. Osthole-Loaded Nanoemulsion Enhances Brain Target in the Treatment of Alzheimer's Disease via Intranasal Administration. Oxid Med Cell Longev 2021;2021:8844455. [PMID: 33564364 DOI: 10.1155/2021/8844455] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
34 Fakhri S, Pesce M, Patruno A, Moradi SZ, Iranpanah A, Farzaei MH, Sobarzo-Sánchez E. Attenuation of Nrf2/Keap1/ARE in Alzheimer's Disease by Plant Secondary Metabolites: A Mechanistic Review. Molecules 2020;25:E4926. [PMID: 33114450 DOI: 10.3390/molecules25214926] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
35 Tsukahara T, Haniu H, Uemura T, Matsuda Y. Therapeutic Potential of Porcine Liver Decomposition Product: New Insights and Perspectives for Microglia-Mediated Neuroinflammation in Neurodegenerative Diseases. Biomedicines 2020;8:E446. [PMID: 33105637 DOI: 10.3390/biomedicines8110446] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
36 Shin EJ, Chung YH, Sharma N, Nguyen BT, Lee SH, Kang SW, Nah SY, Wie MB, Nabeshima T, Jeong JH, Kim HC. Glutathione Peroxidase-1 Knockout Facilitates Memory Impairment Induced by β-Amyloid (1-42) in Mice via Inhibition of PKC βII-Mediated ERK Signaling; Application with Glutathione Peroxidase-1 Gene-Encoded Adenovirus Vector. Neurochem Res 2020;45:2991-3002. [PMID: 33064252 DOI: 10.1007/s11064-020-03147-3] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
37 Lushchekina SV, Masson P. Slow-binding inhibitors of acetylcholinesterase of medical interest. Neuropharmacology 2020;177:108236. [PMID: 32712274 DOI: 10.1016/j.neuropharm.2020.108236] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
38 Sinyor B, Mineo J, Ochner C. Alzheimer's Disease, Inflammation, and the Role of Antioxidants. J Alzheimers Dis Rep 2020;4:175-83. [PMID: 32715278 DOI: 10.3233/ADR-200171] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 14.5] [Reference Citation Analysis]
39 Islam A, Takeyama E, Mamun MA, Sato T, Horikawa M, Takahashi Y, Kikushima K, Setou M. Green Nut Oil or DHA Supplementation Restored Decreased Distribution Levels of DHA Containing Phosphatidylcholines in the Brain of a Mouse Model of Dementia. Metabolites 2020;10:E153. [PMID: 32316172 DOI: 10.3390/metabo10040153] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
40 Silva TF, Cavalcanti Filho JRN, Barreto Fonsêca MML, Santos NMD, Barbosa da Silva AC, Zagmignan A, Abreu AG, Sant'Anna da Silva AP, Lima VLM, Silva NHD, Dutra LM, Almeida JRGDS, Silva MVD, Correia MTDS, Nascimento da Silva LC. Products Derived from Buchenavia tetraphylla Leaves Have In Vitro Antioxidant Activity and Protect Tenebrio molitor Larvae against Escherichia coli-Induced Injury. Pharmaceuticals (Basel) 2020;13:E46. [PMID: 32188166 DOI: 10.3390/ph13030046] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
41 Lin X, Kapoor A, Gu Y, Chow MJ, Peng J, Zhao K, Tang D. Contributions of DNA Damage to Alzheimer's Disease. Int J Mol Sci 2020;21:E1666. [PMID: 32121304 DOI: 10.3390/ijms21051666] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 14.0] [Reference Citation Analysis]
42 谢 桂. Target of Exercise Intervention in AD—Muscle Factor Irisin. APS 2020;08:33-38. [DOI: 10.12677/aps.2020.81007] [Reference Citation Analysis]