BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Sable R, Jois S. Surfing the Protein-Protein Interaction Surface Using Docking Methods: Application to the Design of PPI Inhibitors. Molecules 2015;20:11569-603. [PMID: 26111183 DOI: 10.3390/molecules200611569] [Cited by in Crossref: 46] [Cited by in F6Publishing: 49] [Article Influence: 6.6] [Reference Citation Analysis]
Number Citing Articles
1 Yang Z, Hsu Y, Buehler MJ. Generative multiscale analysis of de novo proteome-inspired molecular structures and nanomechanical optimization using a VoxelPerceiver transformer model. Journal of the Mechanics and Physics of Solids 2023;170:105098. [DOI: 10.1016/j.jmps.2022.105098] [Reference Citation Analysis]
2 Ozono H, Mimoto K, Ishikawa T. Quantification and Neutralization of the Interfacial Electrostatic Potential and Visualization of the Dispersion Interaction in Visualization of the Interfacial Electrostatic Complementarity. J Phys Chem B 2022. [PMID: 36257821 DOI: 10.1021/acs.jpcb.2c05033] [Reference Citation Analysis]
3 Alagöz MA, Doğan İS, Sener S, Özdemir Z. Synthesis, Molecular Docking and Molecular Dynamics Simulation Studies of Some Pyridazinone Derivatives as Lipase Inhibitors. CSJ 2022;43:391-397. [DOI: 10.17776/csj.1135400] [Reference Citation Analysis]
4 Shiraishi K. Elucidation of co-operative roles of non-specific interactions for poly(ethylene glycol) specific interactions and responses. Official Journal of the Japan Society of Drug Delivery System 2022;37:122-130. [DOI: 10.2745/dds.37.122] [Reference Citation Analysis]
5 Sun H, Wang A, Wang L, Wang B, Tian G, Yang J, Liao M. Systematic Tracing of Susceptible Animals to SARS-CoV-2 by a Bioinformatics Framework. Front Microbiol 2022;13:781770. [DOI: 10.3389/fmicb.2022.781770] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 Ershov PV, Mezentsev YV, Ivanov AS. Interfacial Peptides as Affinity Modulating Agents of Protein-Protein Interactions. Biomolecules 2022;12:106. [DOI: 10.3390/biom12010106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Balasubramanian K. Computational and Artificial Intelligence Techniques for Drug Discovery and Administration. Comprehensive Pharmacology 2022. [DOI: 10.1016/b978-0-12-820472-6.00015-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Ishikawa T, Ozono H, Akisawa K, Hatada R, Okuwaki K, Mochizuki Y. Interaction Analysis on the SARS-CoV-2 Spike Protein Receptor Binding Domain Using Visualization of the Interfacial Electrostatic Complementarity. J Phys Chem Lett 2021;12:11267-72. [PMID: 34766775 DOI: 10.1021/acs.jpclett.1c02788] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
9 Ren Y, Long S, Cao S. Molecular Docking and Virtual Screening of an Influenza Virus Inhibitor That Disrupts Protein-Protein Interactions. Viruses 2021;13:2229. [PMID: 34835035 DOI: 10.3390/v13112229] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
10 Lee J, Shin W, Ahn G, Um H, Kim Y, Kim SY, Ahn J, Kim Y. Structure-based molecular docking approach for identifying S‑formylglutathione hydrolase from Sphingobium chungbukense. Toxicol Environ Health Sci 2021;13:407-16. [DOI: 10.1007/s13530-021-00109-2] [Reference Citation Analysis]
11 Parate S, Rampogu S, Lee G, Hong JC, Lee KW. Exploring the Binding Interaction of Raf Kinase Inhibitory Protein With the N-Terminal of C-Raf Through Molecular Docking and Molecular Dynamics Simulation. Front Mol Biosci 2021;8:655035. [PMID: 34124147 DOI: 10.3389/fmolb.2021.655035] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
12 Gupta P, Mohanty D. SMMPPI: a machine learning-based approach for prediction of modulators of protein-protein interactions and its application for identification of novel inhibitors for RBD:hACE2 interactions in SARS-CoV-2. Brief Bioinform 2021:bbab111. [PMID: 33839740 DOI: 10.1093/bib/bbab111] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
13 Zaman N, Shukla A, Rashid S, Santoshi S. In Silico Analysis of Protein–Protein Interactions Between Estrogen Receptor and Fungal Laccase. Advances in Intelligent Systems and Computing 2021. [DOI: 10.1007/978-981-15-5113-0_60] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Sonawane KD, Shanmuga Priya V. Structure-based drug designing strategy to inhibit protein-protein-interactions using in silico tools. Chemoinformatics and Bioinformatics in the Pharmaceutical Sciences 2021. [DOI: 10.1016/b978-0-12-821748-1.00010-5] [Reference Citation Analysis]
15 Massoud TF, Paulmurugan R. Molecular Imaging of Protein–Protein Interactions and Protein Folding. Molecular Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00071-5] [Reference Citation Analysis]
16 Ramaswamy A, Balasubramanian S, Rajagopalan M. Biomolecular Talks—Part 2: Applications and Challenges of Molecular Docking Approaches. Molecular Docking for Computer-Aided Drug Design 2021. [DOI: 10.1016/b978-0-12-822312-3.00024-2] [Reference Citation Analysis]
17 Ishikawa T. A novel method for analysis of the electrostatic complementarity of protein-protein interaction based on fragment molecular orbital method. Chemical Physics Letters 2020;761:138103. [DOI: 10.1016/j.cplett.2020.138103] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
18 Shin WH, Kumazawa K, Imai K, Hirokawa T, Kihara D. Current Challenges and Opportunities in Designing Protein-Protein Interaction Targeted Drugs. Adv Appl Bioinform Chem 2020;13:11-25. [PMID: 33209039 DOI: 10.2147/AABC.S235542] [Cited by in Crossref: 11] [Cited by in F6Publishing: 16] [Article Influence: 5.5] [Reference Citation Analysis]
19 Lee CC, Su YC, Ko TP, Lin LL, Yang CY, Chang SS, Roffler SR, Wang AH. Structural basis of polyethylene glycol recognition by antibody. J Biomed Sci 2020;27:12. [PMID: 31907057 DOI: 10.1186/s12929-019-0589-7] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 5.5] [Reference Citation Analysis]
20 Ngo TD, Plé S, Thomas A, Barette C, Fortuné A, Bouzidi Y, Fauvarque MO, Pereira de Freitas R, Francisco Hilário F, Attrée I, Wong YS, Faudry E. Chimeric Protein-Protein Interface Inhibitors Allow Efficient Inhibition of Type III Secretion Machinery and Pseudomonas aeruginosa Virulence. ACS Infect Dis 2019;5:1843-54. [PMID: 31525902 DOI: 10.1021/acsinfecdis.9b00154] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
21 Balasubramanian K, Gupta SP. Quantum Molecular Dynamics, Topological, Group Theoretical and Graph Theoretical Studies of Protein-Protein Interactions. Curr Top Med Chem 2019;19:426-43. [PMID: 30836919 DOI: 10.2174/1568026619666190304152704] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
22 Velmurugan D, Kutumbarao NHV, Viswanathan V, Bhattacharjee A. Structure-Based Drug Design with a Special Emphasis on Herbal Extracts. Challenges and Advances in Computational Chemistry and Physics 2019. [DOI: 10.1007/978-3-030-05282-9_9] [Reference Citation Analysis]
23 Leherte L, Petit A, Jacquemin D, Vercauteren DP, Laurent AD. Investigating cyclic peptides inhibiting CD2-CD58 interactions through molecular dynamics and molecular docking methods. J Comput Aided Mol Des 2018;32:1295-313. [PMID: 30368623 DOI: 10.1007/s10822-018-0172-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
24 Nero TL, Parker MW, Morton CJ. Protein structure and computational drug discovery. Biochemical Society Transactions 2018;46:1367-79. [DOI: 10.1042/bst20180202] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 4.8] [Reference Citation Analysis]
25 Macalino SJY, Basith S, Clavio NAB, Chang H, Kang S, Choi S. Evolution of In Silico Strategies for Protein-Protein Interaction Drug Discovery. Molecules 2018;23:E1963. [PMID: 30082644 DOI: 10.3390/molecules23081963] [Cited by in Crossref: 56] [Cited by in F6Publishing: 61] [Article Influence: 14.0] [Reference Citation Analysis]
26 Makhouri FR, Ghasemi JB. High-throughput Docking and Molecular Dynamics Simulations towards the Identification of Novel Peptidomimetic Inhibitors against CDC7. Mol Inf 2018;37:1800022. [DOI: 10.1002/minf.201800022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
27 Mishra V, Pathak C. Structural insights into pharmacophore-assisted in silico identification of protein-protein interaction inhibitors for inhibition of human toll-like receptor 4 - myeloid differentiation factor-2 (hTLR4-MD-2) complex. J Biomol Struct Dyn 2019;37:1968-91. [PMID: 29842849 DOI: 10.1080/07391102.2018.1474804] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
28 Perricone U, Gulotta MR, Lombino J, Parrino B, Cascioferro S, Diana P, Cirrincione G, Padova A. An overview of recent molecular dynamics applications as medicinal chemistry tools for the undruggable site challenge. Medchemcomm 2018;9:920-36. [PMID: 30108981 DOI: 10.1039/c8md00166a] [Cited by in Crossref: 25] [Cited by in F6Publishing: 26] [Article Influence: 6.3] [Reference Citation Analysis]
29 Mukherjee S, Nithin C, Divakaruni Y, Bahadur RP. Dissecting water binding sites at protein–protein interfaces: a lesson from the atomic structures in the Protein Data Bank. Journal of Biomolecular Structure and Dynamics 2019;37:1204-19. [DOI: 10.1080/07391102.2018.1453379] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
30 Lu W, Zhang R, Jiang H, Zhang H, Luo C. Computer-Aided Drug Design in Epigenetics. Front Chem 2018;6:57. [PMID: 29594101 DOI: 10.3389/fchem.2018.00057] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 9.0] [Reference Citation Analysis]
31 Singh SS, Jois SD. Homo- and Heterodimerization of Proteins in Cell Signaling: Inhibition and Drug Design. Adv Protein Chem Struct Biol 2018;111:1-59. [PMID: 29459028 DOI: 10.1016/bs.apcsb.2017.08.003] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
32 Pan W, Mao L, Shi M, Fu Y, Jiang X, Feng W, He Y, Xu D, Yuan L. The cytochrome c –cyclo[6]aramide complex as a supramolecular catalyst in methanol. New J Chem 2018;42:3857-66. [DOI: 10.1039/c7nj02741a] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
33 Ercan I, Tufekci KU, Karaca E, Genc S, Genc K. Peptide Derivatives of Erythropoietin in the Treatment of Neuroinflammation and Neurodegeneration. Therapeutic Proteins and Peptides. Elsevier; 2018. pp. 309-57. [DOI: 10.1016/bs.apcsb.2018.01.007] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
34 Tiwari S, Awasthi M, Singh S, Pandey VP, Dwivedi UN. Modulation of interaction of mutant TP53 and wild type BRCA1 by alkaloids: a computational approach towards targeting protein-protein interaction as a futuristic therapeutic intervention strategy for breast cancer impediment. J Biomol Struct Dyn 2018;36:3376-87. [PMID: 28978265 DOI: 10.1080/07391102.2017.1388286] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
35 Shin WH, Christoffer CW, Kihara D. In silico structure-based approaches to discover protein-protein interaction-targeting drugs. Methods 2017;131:22-32. [PMID: 28802714 DOI: 10.1016/j.ymeth.2017.08.006] [Cited by in Crossref: 49] [Cited by in F6Publishing: 50] [Article Influence: 9.8] [Reference Citation Analysis]
36 Walse B, Turnbull AP, Boyd SM. Tailoring Hit Identification and Qualification Methods for Targeting Protein-Protein Interactions. Applied Biophysics for Drug Discovery 2017. [DOI: 10.1002/9781119099512.ch3] [Reference Citation Analysis]
37 Hardcastle I. Protein–Protein Interaction Inhibitors in Cancer. Comprehensive Medicinal Chemistry III 2017. [DOI: 10.1016/b978-0-12-409547-2.12392-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
38 Das A, Bhattacharya S. Different Types of Molecular Docking Based on Variations of Interacting Molecules. Pharmaceutical Sciences 2017. [DOI: 10.4018/978-1-5225-1762-7.ch031] [Reference Citation Analysis]
39 Sarvagalla S, Coumar MS. Protein-Protein Interactions (PPIs) as an Alternative to Targeting the ATP Binding Site of Kinase. Pharmaceutical Sciences 2017. [DOI: 10.4018/978-1-5225-1762-7.ch043] [Reference Citation Analysis]
40 Srivastav VK, Singh V, Tiwari M. Recent Advancements in Docking Methodologies. Oncology 2017. [DOI: 10.4018/978-1-5225-0549-5.ch033] [Reference Citation Analysis]
41 Liu Z, Chen H, Wold E, Zhou J. Small-Molecule Inhibitors of Protein–Protein Interactions. Comprehensive Medicinal Chemistry III 2017. [DOI: 10.1016/b978-0-12-409547-2.12326-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.4] [Reference Citation Analysis]
42 Ferreira LG, Oliva G, Andricopulo AD. Protein-protein interaction inhibitors: advances in anticancer drug design. Expert Opinion on Drug Discovery 2016;11:957-68. [DOI: 10.1080/17460441.2016.1223038] [Cited by in Crossref: 19] [Cited by in F6Publishing: 16] [Article Influence: 3.2] [Reference Citation Analysis]
43 de Ruyck J, Brysbaert G, Blossey R, Lensink MF. Molecular docking as a popular tool in drug design, an in silico travel. Adv Appl Bioinform Chem 2016;9:1-11. [PMID: 27390530 DOI: 10.2147/AABC.S105289] [Cited by in Crossref: 93] [Cited by in F6Publishing: 108] [Article Influence: 15.5] [Reference Citation Analysis]
44 Srivastav VK, Singh V, Tiwari M. Recent Advancements in Docking Methodologies. Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery 2016. [DOI: 10.4018/978-1-5225-0115-2.ch011] [Reference Citation Analysis]
45 Das A, Bhattacharya S. Different Types of Molecular Docking Based on Variations of Interacting Molecules. In: Dastmalchi S, Hamzeh-mivehroud M, Sokouti B, editors. Methods and Algorithms for Molecular Docking-Based Drug Design and Discovery. IGI Global; 2016. pp. 148-72. [DOI: 10.4018/978-1-5225-0115-2.ch006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
46 Sarvagalla S, Coumar MS. Protein-Protein Interactions (PPIs) as an Alternative to Targeting the ATP Binding Site of Kinase. Advances in Medical Technologies and Clinical Practice 2016. [DOI: 10.4018/978-1-5225-0362-0.ch010] [Reference Citation Analysis]
47 Cau Y, Fiorillo A, Mori M, Ilari A, Botta M, Lalle M. Molecular Dynamics Simulations and Structural Analysis of Giardia duodenalis 14-3-3 Protein-Protein Interactions. J Chem Inf Model 2015;55:2611-22. [PMID: 26551337 DOI: 10.1021/acs.jcim.5b00452] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
48 Miglianico M, Nicolaes GA, Neumann D. Pharmacological Targeting of AMP-Activated Protein Kinase and Opportunities for Computer-Aided Drug Design. J Med Chem 2016;59:2879-93. [PMID: 26510622 DOI: 10.1021/acs.jmedchem.5b01201] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 2.9] [Reference Citation Analysis]