BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tiwari V, Tarbutton MS, Shukla D. Diversity of heparan sulfate and HSV entry: basic understanding and treatment strategies. Molecules 2015;20:2707-27. [PMID: 25665065 DOI: 10.3390/molecules20022707] [Cited by in Crossref: 32] [Cited by in F6Publishing: 34] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Smith MM, Melrose J. Pentosan Polysulfate Affords Pleotropic Protection to Multiple Cells and Tissues. Pharmaceuticals 2023;16:437. [DOI: 10.3390/ph16030437] [Reference Citation Analysis]
2 Elste J, Chan A, Patil C, Tripathi V, Shadrack DM, Jaishankar D, Hawkey A, Mungerson MS, Shukla D, Tiwari V. Archaic connectivity between the sulfated heparan sulfate and the herpesviruses - An evolutionary potential for cross-species interactions. Comput Struct Biotechnol J 2023;21:1030-40. [PMID: 36733705 DOI: 10.1016/j.csbj.2023.01.005] [Reference Citation Analysis]
3 Sreekumar S, M Kuthe A, Chandra Tripathi S, C Patil G, Ravikumar C. Integrated computational approach towards identification of HSPG and ACE2 mimicking moieties for SARS-CoV-2 inhibition. J Mol Liq 2022;367:120566. [PMID: 36276265 DOI: 10.1016/j.molliq.2022.120566] [Reference Citation Analysis]
4 Hsieh CF, Chen YL, Lin GH, Chan YF, Hsieh PW, Horng JT. 3,4-Dicaffeoylquinic Acid from the Medicinal Plant Ilex kaushue Disrupts the Interaction Between the Five-Fold Axis of Enterovirus A-71 and the Heparan Sulfate Receptor. J Virol 2022;:e0054221. [PMID: 35319229 DOI: 10.1128/jvi.00542-21] [Reference Citation Analysis]
5 Alcorn MDH, Klimstra WB. Glycosaminoglycan binding by arboviruses: a cautionary tale. J Gen Virol 2022;103. [PMID: 35191823 DOI: 10.1099/jgv.0.001726] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
6 Barreto-vieira DF, da Silva MAN, de Almeida ALT, Rasinhas ADC, Monteiro ME, Miranda MD, Motta FC, Siqueira MM, Girard-dias W, Archanjo BS, Bozza PT, L. Souza TM, Gomes Dias SS, Soares VC, Barth OM. SARS-CoV-2: Ultrastructural Characterization of Morphogenesis in an In Vitro System. Viruses 2022;14:201. [DOI: 10.3390/v14020201] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
7 Allahyari S, Pakbin B, Amani Z, Mahmoudi R, Hamidiyan G, Peymani A, Qajarbeygi P, Mousavi S. Antiviral activity of Phoenix dactylifera extracts against herpes simplex virus type 1: an animal study. Comp Clin Pathol 2021;30:945-951. [DOI: 10.1007/s00580-021-03293-2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
8 Mitra D, Hasan MH, Bates JT, Bierdeman MA, Ederer DR, Parmar RC, Fassero LA, Liang Q, Qiu H, Tiwari V, Zhang F, Linhardt RJ, Sharp JS, Wang L, Tandon R. The degree of polymerization and sulfation patterns in heparan sulfate are critical determinants of cytomegalovirus entry into host cells. PLoS Pathog 2021;17:e1009803. [PMID: 34352038 DOI: 10.1371/journal.ppat.1009803] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
9 De Pasquale V, Quiccione MS, Tafuri S, Avallone L, Pavone LM. Heparan Sulfate Proteoglycans in Viral Infection and Treatment: A Special Focus on SARS-CoV-2. Int J Mol Sci 2021;22:6574. [PMID: 34207476 DOI: 10.3390/ijms22126574] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 8.0] [Reference Citation Analysis]
10 Chopra P, Joshi A, Wu J, Lu W, Yadavalli T, Wolfert MA, Shukla D, Zaia J, Boons GJ. The 3-O-sulfation of heparan sulfate modulates protein binding and lyase degradation. Proc Natl Acad Sci U S A 2021;118:e2012935118. [PMID: 33441484 DOI: 10.1073/pnas.2012935118] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 12.0] [Reference Citation Analysis]
11 Künze G, Huster D, Samsonov SA. Investigation of the structure of regulatory proteins interacting with glycosaminoglycans by combining NMR spectroscopy and molecular modeling - the beginning of a wonderful friendship. Biol Chem 2021. [PMID: 33882203 DOI: 10.1515/hsz-2021-0119] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
12 Koganti R, Memon A, Shukla D. Emerging Roles of Heparan Sulfate Proteoglycans in Viral Pathogenesis. Semin Thromb Hemost 2021;47:283-94. [PMID: 33851373 DOI: 10.1055/s-0041-1725068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
13 Tiwari V, Tandon R, Sankaranarayanan NV, Beer JC, Kohlmeir EK, Swanson-Mungerson M, Desai UR. Preferential recognition and antagonism of SARS-CoV-2 spike glycoprotein binding to 3- O -sulfated heparan sulfate. bioRxiv 2020:2020. [PMID: 33052337 DOI: 10.1101/2020.10.08.331751] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
14 Li Puma DD, Marcocci ME, Lazzarino G, De Chiara G, Tavazzi B, Palamara AT, Piacentini R, Grassi C. Ca2+ -dependent release of ATP from astrocytes affects herpes simplex virus type 1 infection of neurons. Glia 2021;69:201-15. [PMID: 32818313 DOI: 10.1002/glia.23895] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
15 Gulberti S, Mao X, Bui C, Fournel-gigleux S. The role of heparan sulfate maturation in cancer: A focus on the 3O-sulfation and the enigmatic 3O-sulfotransferases (HS3STs). Seminars in Cancer Biology 2020;62:68-85. [DOI: 10.1016/j.semcancer.2019.10.009] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
16 Elste J, Kaltenbach D, Patel VR, Nguyen MT, Sharthiya H, Tandon R, Mehta SK, Volin MV, Fornaro M, Tiwari V, Desai UR. Inhibition of Human Cytomegalovirus Entry into Host Cells Through a Pleiotropic Small Molecule. Int J Mol Sci 2020;21:E1676. [PMID: 32121406 DOI: 10.3390/ijms21051676] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
17 Cagno V, Tseligka ED, Jones ST, Tapparel C. Heparan Sulfate Proteoglycans and Viral Attachment: True Receptors or Adaptation Bias? Viruses 2019;11:E596. [PMID: 31266258 DOI: 10.3390/v11070596] [Cited by in Crossref: 179] [Cited by in F6Publishing: 182] [Article Influence: 44.8] [Reference Citation Analysis]
18 Gangji RN, Sankaranarayanan NV, Elste J, Al-Horani RA, Afosah DK, Joshi R, Tiwari V, Desai UR. Inhibition of Herpes Simplex Virus-1 Entry into Human Cells by Nonsaccharide Glycosaminoglycan Mimetics. ACS Med Chem Lett 2018;9:797-802. [PMID: 30128070 DOI: 10.1021/acsmedchemlett.7b00364] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 4.0] [Reference Citation Analysis]
19 Pachota M, Klysik K, Synowiec A, Ciejka J, Szczubiałka K, Pyrć K, Nowakowska M. Inhibition of Herpes Simplex Viruses by Cationic Dextran Derivatives. J Med Chem 2017;60:8620-30. [DOI: 10.1021/acs.jmedchem.7b01189] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
20 Langevin C, Aleksejeva E, Houel A, Briolat V, Torhy C, Lunazzi A, Levraud JP, Boudinot P. FTR83, a Member of the Large Fish-Specific finTRIM Family, Triggers IFN Pathway and Counters Viral Infection. Front Immunol 2017;8:617. [PMID: 28603526 DOI: 10.3389/fimmu.2017.00617] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
21 Sharthiya H, Seng C, Van Kuppevelt TH, Tiwari V, Fornaro M. HSV-1 interaction to 3-O-sulfated heparan sulfate in mouse-derived DRG explant and profiles of inflammatory markers during virus infection. J Neurovirol 2017;23:483-91. [PMID: 28326469 DOI: 10.1007/s13365-017-0521-4] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 2.2] [Reference Citation Analysis]
22 Duggal N, Jaishankar D, Yadavalli T, Hadigal S, Mishra YK, Adelung R, Shukla D. Zinc oxide tetrapods inhibit herpes simplex virus infection of cultured corneas. Mol Vis 2017;23:26-38. [PMID: 28275313] [Reference Citation Analysis]
23 Thakkar N, Jaishankar D, Agelidis A, Yadavalli T, Mangano K, Patel S, Tekin SZ, Shukla D. Cultured corneas show dendritic spread and restrict herpes simplex virus infection that is not observed with cultured corneal cells. Sci Rep 2017;7:42559. [PMID: 28198435 DOI: 10.1038/srep42559] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 1.8] [Reference Citation Analysis]
24 Ferro V. Glycosaminoglycans and Their Mimetics. Molecules 2016;22:E20. [PMID: 28029141 DOI: 10.3390/molecules22010020] [Reference Citation Analysis]
25 Raman R, Tharakaraman K, Sasisekharan V, Sasisekharan R. Glycan-protein interactions in viral pathogenesis. Curr Opin Struct Biol 2016;40:153-62. [PMID: 27792989 DOI: 10.1016/j.sbi.2016.10.003] [Cited by in Crossref: 83] [Cited by in F6Publishing: 83] [Article Influence: 11.9] [Reference Citation Analysis]
26 Panday A, Inda ME, Bagam P, Sahoo MK, Osorio D, Batra S. Transcription Factor NF-κB: An Update on Intervention Strategies. Arch Immunol Ther Exp (Warsz) 2016;64:463-83. [PMID: 27236331 DOI: 10.1007/s00005-016-0405-y] [Cited by in Crossref: 75] [Cited by in F6Publishing: 87] [Article Influence: 10.7] [Reference Citation Analysis]
27 Jaishankar D, Buhrman JS, Valyi-Nagy T, Gemeinhart RA, Shukla D. Extended Release of an Anti-Heparan Sulfate Peptide From a Contact Lens Suppresses Corneal Herpes Simplex Virus-1 Infection. Invest Ophthalmol Vis Sci 2016;57:169-80. [PMID: 26780322 DOI: 10.1167/iovs.15-18365] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 3.9] [Reference Citation Analysis]
28 Barras A, Pagneux Q, Sane F, Wang Q, Boukherroub R, Hober D, Szunerits S. High Efficiency of Functional Carbon Nanodots as Entry Inhibitors of Herpes Simplex Virus Type 1. ACS Appl Mater Interfaces 2016;8:9004-13. [DOI: 10.1021/acsami.6b01681] [Cited by in Crossref: 77] [Cited by in F6Publishing: 84] [Article Influence: 11.0] [Reference Citation Analysis]
29 Chang K, Baginski J, Hassan SF, Volin M, Shukla D, Tiwari V. Filopodia and Viruses: An Analysis of Membrane Processes in Entry Mechanisms. Front Microbiol 2016;7:300. [PMID: 27014223 DOI: 10.3389/fmicb.2016.00300] [Cited by in Crossref: 44] [Cited by in F6Publishing: 51] [Article Influence: 6.3] [Reference Citation Analysis]
30 Wang PY, Swain HM, Kunkler AL, Chen CY, Hutzen BJ, Arnold MA, Streby KA, Collins MH, Dipasquale B, Stanek JR, Conner J, van Kuppevelt TH, Glorioso JC, Grandi P, Cripe TP. Neuroblastomas vary widely in their sensitivities to herpes simplex virotherapy unrelated to virus receptors and susceptibility. Gene Ther 2016;23:135-43. [PMID: 26583803 DOI: 10.1038/gt.2015.105] [Cited by in Crossref: 24] [Cited by in F6Publishing: 26] [Article Influence: 3.0] [Reference Citation Analysis]
31 Vanheule V, Vervaeke P, Mortier A, Noppen S, Gouwy M, Snoeck R, Andrei G, Van Damme J, Liekens S, Proost P. Basic chemokine-derived glycosaminoglycan binding peptides exert antiviral properties against dengue virus serotype 2, herpes simplex virus-1 and respiratory syncytial virus. Biochem Pharmacol 2016;100:73-85. [PMID: 26551597 DOI: 10.1016/j.bcp.2015.11.001] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 2.8] [Reference Citation Analysis]
32 McCormick S, He Q, Stern J, Khodarev N, Weichselbaum R, Skelly CL. Evidence for the Use of Multiple Mechanisms by Herpes Simplex Virus-1 R7020 to Inhibit Intimal Hyperplasia. PLoS One 2015;10:e0130264. [PMID: 26132411 DOI: 10.1371/journal.pone.0130264] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
33 Yakoub AM, Shukla D. Herpes Simplex Virus-1 Fine-Tunes Host's Autophagic Response to Infection: A Comprehensive Analysis in Productive Infection Models. PLoS One 2015;10:e0124646. [PMID: 25894397 DOI: 10.1371/journal.pone.0124646] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 1.4] [Reference Citation Analysis]
34 Baldwin J, Maus E, Zanotti B, Volin MV, Tandon R, Shukla D, Tiwari V. A role for 3-O-sulfated heparan sulfate in promoting human cytomegalovirus infection in human iris cells. J Virol 2015;89:5185-92. [PMID: 25717110 DOI: 10.1128/JVI.00109-15] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 1.9] [Reference Citation Analysis]
35 [DOI: 10.1101/590463] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]