BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Hibbitts A, O'Leary C. Emerging Nanomedicine Therapies to Counter the Rise of Methicillin-Resistant Staphylococcus aureus. Materials (Basel) 2018;11:E321. [PMID: 29473883 DOI: 10.3390/ma11020321] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 4.5] [Reference Citation Analysis]
Number Citing Articles
1 Wu Z, Chan B, Low J, Chu JJH, Hey HWD, Tay A. Microbial resistance to nanotechnologies: An important but understudied consideration using antimicrobial nanotechnologies in orthopaedic implants. Bioact Mater 2022;16:249-70. [PMID: 35415290 DOI: 10.1016/j.bioactmat.2022.02.014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
2 Giráldez-pérez RM, Grueso EM, Jiménez-aguayo R, Carbonero A, González-bravo M, Kuliszewska E, Prado-gotor R. Use of Nanoparticles to Prevent Resistance to Antibiotics—Synthesis and Characterization of Gold Nanosystems Based on Tetracycline. Pharmaceutics 2022;14:1941. [DOI: 10.3390/pharmaceutics14091941] [Reference Citation Analysis]
3 Kumar M, Pandey SK, Lalhall A, Sharma R, Sharma RK, Wangoo N. Targeting bacterial biofilms using vancomycin and multivalent cell-penetrating peptide labeled quantum dots. J Biomed Mater Res B Appl Biomater 2022. [PMID: 36056808 DOI: 10.1002/jbm.b.35150] [Reference Citation Analysis]
4 Yeo WWY, Maran S, Kong AS, Cheng W, Lim SE, Loh J, Lai K. A Metal-Containing NP Approach to Treat Methicillin-Resistant Staphylococcus aureus (MRSA): Prospects and Challenges. Materials 2022;15:5802. [DOI: 10.3390/ma15175802] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Masimen MAA, Harun NA, Maulidiani M, Ismail WIW. Overcoming Methicillin-Resistance Staphylococcus aureus (MRSA) Using Antimicrobial Peptides-Silver Nanoparticles. Antibiotics 2022;11:951. [DOI: 10.3390/antibiotics11070951] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Kamal R, Razzaq A, Ali shah K, Khan ZU, Khan NU, Menaa F, Iqbal H, Cui J. Evaluation of cephalexin-loaded PHBV nanofibers for MRSA-infected diabetic foot ulcers treatment. Journal of Drug Delivery Science and Technology 2022;71:103349. [DOI: 10.1016/j.jddst.2022.103349] [Reference Citation Analysis]
7 Baji A, Truong VK, Gangadoo S, Yin H, Chapman J, Abtahi M, Oopath SV. Durable Antibacterial and Antifungal Hierarchical Silver-Embedded Poly(vinylidene fluoride- co -hexafluoropropylene) Fabricated Using Electrospinning. ACS Appl Polym Mater 2021;3:4256-63. [DOI: 10.1021/acsapm.1c00705] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
8 Neculai-Valeanu AS, Ariton AM, Mădescu BM, Rîmbu CM, Creangă Ş. Nanomaterials and Essential Oils as Candidates for Developing Novel Treatment Options for Bovine Mastitis. Animals (Basel) 2021;11:1625. [PMID: 34072849 DOI: 10.3390/ani11061625] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Algharib SA, Dawood A, Xie S. Nanoparticles for treatment of bovine Staphylococcus aureus mastitis. Drug Deliv 2020;27:292-308. [PMID: 32036717 DOI: 10.1080/10717544.2020.1724209] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
10 Vanamala K, Tatiparti K, Bhise K, Sau S, Scheetz MH, Rybak MJ, Andes D, Iyer AK. Novel approaches for the treatment of methicillin-resistant Staphylococcus aureus: Using nanoparticles to overcome multidrug resistance. Drug Discov Today 2021;26:31-43. [PMID: 33091564 DOI: 10.1016/j.drudis.2020.10.011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
11 Mehanna MM, Mneimneh AT, Abed El Jalil K. Levofloxacin-loaded naturally occurring monoterpene-based nanoemulgel: a feasible efficient system to circumvent MRSA ocular infections. Drug Dev Ind Pharm 2020;46:1787-99. [PMID: 32896171 DOI: 10.1080/03639045.2020.1821048] [Cited by in Crossref: 4] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
12 S. R, M. SA, D. M, C. R, N. SK, S. H. Toxicity assessment of silver nanoparticles synthesized using endophytic fungi against nosacomial infection. Inorganic and Nano-Metal Chemistry 2021;51:1080-5. [DOI: 10.1080/24701556.2020.1814332] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
13 Fulaz S, Devlin H, Vitale S, Quinn L, O'Gara JP, Casey E. Tailoring Nanoparticle-Biofilm Interactions to Increase the Efficacy of Antimicrobial Agents Against Staphylococcus aureus. Int J Nanomedicine 2020;15:4779-91. [PMID: 32753866 DOI: 10.2147/IJN.S256227] [Cited by in Crossref: 11] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
14 Miranda TM, Oliveira AR, Andrade LMD, Silva GF, da Silva JG, Ferreira GF, Denadai ÂML. Mechanisms of interaction of Cetylpyridinium chloride with Staphylococcus aureus in the presence of β-cyclodextrin. J Incl Phenom Macrocycl Chem 2020;97:205-15. [DOI: 10.1007/s10847-020-00996-x] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Jee S, Kim M, Shinde SK, Ghodake GS, Sung J, Kadam AA. Assembling ZnO and Fe3O4 nanostructures on halloysite nanotubes for anti-bacterial assessments. Applied Surface Science 2020;509:145358. [DOI: 10.1016/j.apsusc.2020.145358] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
16 O'Leary C, Soriano L, Fagan-Murphy A, Ivankovic I, Cavanagh B, O'Brien FJ, Cryan SA. The Fabrication and in vitro Evaluation of Retinoic Acid-Loaded Electrospun Composite Biomaterials for Tracheal Tissue Regeneration. Front Bioeng Biotechnol 2020;8:190. [PMID: 32266229 DOI: 10.3389/fbioe.2020.00190] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
17 Kiani MH, Imran M, Raza A, Shahnaz G. Multi-functionalized nanocarriers targeting bacterial reservoirs to overcome challenges of multi drug-resistance. Daru 2020;28:319-32. [PMID: 32193748 DOI: 10.1007/s40199-020-00337-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
18 Hibbitts A, Lucía A, Serrano-Sevilla I, De Matteis L, McArthur M, de la Fuente JM, Aínsa JA, Navarro F. Co-delivery of free vancomycin and transcription factor decoy-nanostructured lipid carriers can enhance inhibition of methicillin resistant Staphylococcus aureus (MRSA). PLoS One 2019;14:e0220684. [PMID: 31479462 DOI: 10.1371/journal.pone.0220684] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
19 Gajdács M. The Continuing Threat of Methicillin-Resistant Staphylococcus aureus. Antibiotics (Basel) 2019;8:E52. [PMID: 31052511 DOI: 10.3390/antibiotics8020052] [Cited by in Crossref: 73] [Cited by in F6Publishing: 94] [Article Influence: 24.3] [Reference Citation Analysis]
20 Van Giau V, An SSA, Hulme J. Recent advances in the treatment of pathogenic infections using antibiotics and nano-drug delivery vehicles. Drug Des Devel Ther 2019;13:327-43. [PMID: 30705582 DOI: 10.2147/DDDT.S190577] [Cited by in Crossref: 45] [Cited by in F6Publishing: 51] [Article Influence: 15.0] [Reference Citation Analysis]