BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Rezar R, Jirak P, Gschwandtner M, Derler R, Felder TK, Haslinger M, Kopp K, Seelmaier C, Granitz C, Hoppe UC, Lichtenauer M. Heart-Type Fatty Acid-Binding Protein (H-FABP) and its Role as a Biomarker in Heart Failure: What Do We Know So Far? J Clin Med 2020;9:E164. [PMID: 31936148 DOI: 10.3390/jcm9010164] [Cited by in Crossref: 26] [Cited by in F6Publishing: 29] [Article Influence: 13.0] [Reference Citation Analysis]
Number Citing Articles
1 Orlov AV, Malkerov JA, Novichikhin DO, Nikitin AI, Sorokin GM, Antopolsky ML, Znoyko SL. Method of kinetic characterization of immunoreagents for development of express high-sensitive assays for detection of ochratoxin A and heart fatty acids binding protein. MethodsX 2022. [DOI: 10.1016/j.mex.2022.101911] [Reference Citation Analysis]
2 Badianyama M, Mpanya D, Adamu U, Sigauke F, Nel S, Tsabedze N. New Biomarkers and Their Potential Role in Heart Failure Treatment Optimisation-An African Perspective. J Cardiovasc Dev Dis 2022;9:335. [PMID: 36286287 DOI: 10.3390/jcdd9100335] [Reference Citation Analysis]
3 Li B, Syed MH, Khan H, Singh KK, Qadura M. The Role of Fatty Acid Binding Protein 3 in Cardiovascular Diseases. Biomedicines 2022;10:2283. [DOI: 10.3390/biomedicines10092283] [Reference Citation Analysis]
4 Lian W, Wang Z, Ma Y, Tong Y, Zhang X, Jin H, Zhao S, Yu R, Ju S, Zhang X, Guo X, Huang T, Ding X, Peng M. FABP6 Expression Correlates with Immune Infiltration and Immunogenicity in Colorectal Cancer Cells. J Immunol Res 2022;2022:3129765. [PMID: 36033394 DOI: 10.1155/2022/3129765] [Reference Citation Analysis]
5 Hyder A. Naturally-occurring carboxylic acids from traditional antidiabetic plants as potential pancreatic islet FABP3 inhibitors. A molecular docking–aided study.. [DOI: 10.21203/rs.3.rs-1975646/v2] [Reference Citation Analysis]
6 Hyder A. Naturally-occurring carboxylic acids from traditional antidiabetic plants as potential pancreatic islet FABP3 inhibitors. A molecular docking–aided study.. [DOI: 10.21203/rs.3.rs-1975646/v1] [Reference Citation Analysis]
7 Zheng Z, Zhu S, Lv M, Gu Z, Hu H. Harnessing nanotechnology for cardiovascular disease applications - a comprehensive review based on bibliometric analysis. Nano Today 2022;44:101453. [DOI: 10.1016/j.nantod.2022.101453] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
8 Roehm B, McAdams M, Hedayati SS. Novel Biomarkers of Kidney Disease in Advanced Heart Failure: Beyond GFR and Proteinuria. Curr Heart Fail Rep 2022. [PMID: 35624386 DOI: 10.1007/s11897-022-00557-y] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
9 Ponikowska B, Iwanek G, Zdanowicz A, Urban S, Zymliński R, Ponikowski P, Biegus J. Biomarkers of Myocardial Injury and Remodeling in Heart Failure. JPM 2022;12:799. [DOI: 10.3390/jpm12050799] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 He S, Leng W, Du X, He Y, Zhao Y, Wang Y, Yu S. Diagnostic significance of heart-type fatty acid-binding protein as a potential biomarker to predict the mortality rate of patients with sepsis: a systematic review and meta-analysis. Expert Rev Mol Diagn 2022. [PMID: 35196937 DOI: 10.1080/14737159.2022.2046464] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Jirak P, Haertel F, Mirna M, Rezar R, Lichtenauer M, Paar V, Motloch LJ, Topf A, Yilmaz A, Hoppe UC, Schulze PC, Nuding S, Werdan K, Kretzschmar D, Pistulli R, Ebelt H. A Comparative Analysis of Novel Biomarkers in Sepsis and Cardiovascular Disease. Applied Sciences 2022;12:1419. [DOI: 10.3390/app12031419] [Reference Citation Analysis]
12 Shi Z, Xu Z, Hu J, Wei W, Zeng X, Zhao WW, Lin P. Ascorbic acid-mediated organic photoelectrochemical transistor sensing strategy for highly sensitive detection of heart-type fatty acid binding protein. Biosens Bioelectron 2022;201:113958. [PMID: 34996003 DOI: 10.1016/j.bios.2021.113958] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
13 Abdelaaty T, Morsy E, Rizq M, Shokry A, Abdelhameid A, Fathalla R. Relation of serum heart type fatty acid binding protein to left ventricular diastolic dysfunction in patients with type 2 diabetes and early diabetic kidney disease. Journal of Diabetes and its Complications 2022. [DOI: 10.1016/j.jdiacomp.2021.108122] [Reference Citation Analysis]
14 Gruson D, Adamantidou C, Ahn SA, Rousseau MF. Heart-type fatty acid binding protein is related to severity and established cardiac biomarkers of heart failure. Advances in Laboratory Medicine / Avances en Medicina de Laboratorio 2021;2:541-544. [DOI: 10.1515/almed-2021-0035] [Reference Citation Analysis]
15 Gruson D, Adamantidou C, Ahn SA, Rousseau MF. La proteína de unión a los ácidos grasos cardíaca (HFABP) está relacionada con la gravedad de la insuficiencia cardíaca y sus biomarcadores cardíacos conocidos. Advances in Laboratory Medicine / Avances en Medicina de Laboratorio 2021;2:545-549. [DOI: 10.1515/almed-2021-0071] [Reference Citation Analysis]
16 Tanase DM, Gosav EM, Petrov D, Jucan AE, Lacatusu CM, Floria M, Tarniceriu CC, Costea CF, Ciocoiu M, Rezus C. Involvement of Ceramides in Non-Alcoholic Fatty Liver Disease (NAFLD) Atherosclerosis (ATS) Development: Mechanisms and Therapeutic Targets. Diagnostics (Basel) 2021;11:2053. [PMID: 34829402 DOI: 10.3390/diagnostics11112053] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Ataklte F, Vasan RS. Heart failure risk estimation based on novel biomarkers. Expert Rev Mol Diagn 2021;21:655-72. [PMID: 34014781 DOI: 10.1080/14737159.2021.1933446] [Reference Citation Analysis]
18 Sipos B, Jirak P, Paar V, Rezar R, Mirna M, Kopp K, Hoppe UC, Berezin AE, Lichtenauer M. Promising Novel Biomarkers in Cardiovascular Diseases. Applied Sciences 2021;11:3654. [DOI: 10.3390/app11083654] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
19 Stege NM, de Boer RA, van den Berg MP, Silljé HHW. The Time Has Come to Explore Plasma Biomarkers in Genetic Cardiomyopathies. Int J Mol Sci 2021;22:2955. [PMID: 33799487 DOI: 10.3390/ijms22062955] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
20 Serezhina EK, Obrezan AG. New biomarkers of injury, inflammation and remodeling in the differential diagnosis of heart failure types. Russ J Cardiol 2021;26:3914. [DOI: 10.15829/1560-4071-2021-3914] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Kagami K, Sunaga H, Sorimachi H, Harada T, Yoshida K, Kato T, Kurosawa K, Kawakami R, Koitabashi N, Iso T, Adachi T, Kurabayashi M, Obokata M. Prognostic impact of elevated fatty acid-binding protein 1 in patients with heart failure. ESC Heart Fail 2021;8:1494-501. [PMID: 33539661 DOI: 10.1002/ehf2.13239] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
22 Zheng Y, He JQ. Common differentially expressed genes and pathways correlating both coronary artery disease and atrial fibrillation. EXCLI J 2021;20:126-41. [PMID: 33564282 DOI: 10.17179/excli2020-3262] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
23 Reyes-Retana JA, Duque-Ossa LC. Acute Myocardial Infarction Biosensor: A Review From Bottom Up. Curr Probl Cardiol 2021;46:100739. [PMID: 33250264 DOI: 10.1016/j.cpcardiol.2020.100739] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
24 Gan X, Han D, Wang J, Liu P, Li X, Zheng Q, Yan Y. A highly sensitive electrochemiluminescence immunosensor for h-FABP determination based on self-enhanced luminophore coupled with ultrathin 2D nickel metal-organic framework nanosheets. Biosens Bioelectron 2021;171:112735. [PMID: 33075723 DOI: 10.1016/j.bios.2020.112735] [Cited by in Crossref: 16] [Cited by in F6Publishing: 14] [Article Influence: 8.0] [Reference Citation Analysis]
25 D'Anneo A, Bavisotto CC, Gammazza AM, Paladino L, Carlisi D, Cappello F, de Macario EC, Macario AJL, Lauricella M. Lipid chaperones and associated diseases: a group of chaperonopathies defining a new nosological entity with implications for medical research and practice. Cell Stress Chaperones 2020;25:805-20. [PMID: 32856199 DOI: 10.1007/s12192-020-01153-6] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 4.5] [Reference Citation Analysis]
26 Han X, Chen D, Liufu N, Ji F, Zeng Q, Yao W, Cao M. MG53 Protects against Sepsis-Induced Myocardial Dysfunction by Upregulating Peroxisome Proliferator-Activated Receptor-α. Oxid Med Cell Longev 2020;2020:7413693. [PMID: 32908637 DOI: 10.1155/2020/7413693] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]
27 Jasim H, Ernberg M, Carlsson A, Gerdle B, Ghafouri B. Protein Signature in Saliva of Temporomandibular Disorders Myalgia. Int J Mol Sci 2020;21:E2569. [PMID: 32272779 DOI: 10.3390/ijms21072569] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 2.5] [Reference Citation Analysis]