BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Xu Z, Orkwis JA, Harris GM. Cell Shape and Matrix Stiffness Impact Schwann Cell Plasticity via YAP/TAZ and Rho GTPases. Int J Mol Sci 2021;22:4821. [PMID: 34062912 DOI: 10.3390/ijms22094821] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
Number Citing Articles
1 Guan Y, Ren Z, Yang B, Xu W, Wu W, Li X, Zhang T, Li D, Chen S, Bai J, Song X, Jia Z, Xiong X, He S, Li C, Meng F, Wu T, Zhang J, Liu X, Meng H, Peng J, Wang Y. Dual-bionic regenerative microenvironment for peripheral nerve repair. Bioact Mater 2023;26:370-86. [PMID: 36942011 DOI: 10.1016/j.bioactmat.2023.02.002] [Reference Citation Analysis]
2 Xie N, Xiao C, Shu Q, Cheng B, Wang Z, Xue R, Wen Z, Wang J, Shi H, Fan D, Liu N, Xu F. Cell response to mechanical microenvironment cues via Rho signaling: From mechanobiology to mechanomedicine. Acta Biomater 2023;159:1-20. [PMID: 36717048 DOI: 10.1016/j.actbio.2023.01.039] [Reference Citation Analysis]
3 Piccolo S, Panciera T, Contessotto P, Cordenonsi M. YAP/TAZ as master regulators in cancer: modulation, function and therapeutic approaches. Nat Cancer 2023;4:9-26. [PMID: 36564601 DOI: 10.1038/s43018-022-00473-z] [Reference Citation Analysis]
4 Yan L, Entezari A, Zhang Z, Zhong J, Liang J, Li Q, Qi J. An experimental and numerical study of the microstructural and biomechanical properties of human peripheral nerve endoneurium for the design of tissue scaffolds. Front Bioeng Biotechnol 2022;10:1029416. [PMID: 36545684 DOI: 10.3389/fbioe.2022.1029416] [Reference Citation Analysis]
5 Hörner SJ, Couturier N, Gueiber DC, Hafner M, Rudolf R. Development and In Vitro Differentiation of Schwann Cells. Cells 2022;11. [PMID: 36497014 DOI: 10.3390/cells11233753] [Reference Citation Analysis]
6 Smith CS, Orkwis JA, Bryan AE, Xu Z, Harris GM. The impact of physical, biochemical, and electrical signaling on Schwann cell plasticity. Eur J Cell Biol 2022;101:151277. [PMID: 36265214 DOI: 10.1016/j.ejcb.2022.151277] [Reference Citation Analysis]
7 Mcmorrow LA, Kosalko A, Robinson D, Saiani A, Reid AJ. Advancing Our Understanding of the Chronically Denervated Schwann Cell: A Potential Therapeutic Target? Biomolecules 2022;12:1128. [DOI: 10.3390/biom12081128] [Reference Citation Analysis]
8 Liu F, Xu J, Liu A, Wu L, Wang D, Han Q, Zheng T, Wang F, Kong Y, Li G, Li P, Gu S, Yang Y. Development of a polyacrylamide/chitosan composite hydrogel conduit containing synergistic cues of elasticity and topographies for promoting peripheral nerve regeneration. Biomater Sci 2022. [PMID: 35861493 DOI: 10.1039/d2bm00327a] [Reference Citation Analysis]
9 Kong L, Gao X, Qian Y, Sun W, You Z, Fan C. Biomechanical microenvironment in peripheral nerve regeneration: from pathophysiological understanding to tissue engineering development. Theranostics 2022;12:4993-5014. [PMID: 35836812 DOI: 10.7150/thno.74571] [Reference Citation Analysis]
10 Lai H, Gong B, Yin J, Qian J. 3D printing topographic cues for cell contact guidance: A review. Materials & Design 2022;218:110663. [DOI: 10.1016/j.matdes.2022.110663] [Reference Citation Analysis]
11 Negro S, Pirazzini M, Rigoni M. Models and methods to study Schwann cells. J Anat 2022. [PMID: 34988978 DOI: 10.1111/joa.13606] [Cited by in F6Publishing: 2] [Reference Citation Analysis]