BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Niculescu AG, Chircov C, Bîrcă AC, Grumezescu AM. Fabrication and Applications of Microfluidic Devices: A Review. Int J Mol Sci 2021;22:2011. [PMID: 33670545 DOI: 10.3390/ijms22042011] [Cited by in Crossref: 8] [Cited by in F6Publishing: 56] [Article Influence: 8.0] [Reference Citation Analysis]
Number Citing Articles
1 Frantellizzi V, Verrina V, Raso C, Pontico M, Petronella F, Bertana V, Ballesio A, Marasso S, Miglietta S, Rosa P, Scibetta S, Petrozza V, De Feo M, De Vincentis G, Calogero A, Pani R, Perotto G, De Sio L. 99mTc-labeled keratin gold-nanoparticles in a nephron-like microfluidic chip for photo-thermal therapy applications. Materials Today Advances 2022;16:100286. [DOI: 10.1016/j.mtadv.2022.100286] [Reference Citation Analysis]
2 Chen X, Lv H. Intelligent control of nanoparticle synthesis on microfluidic chips with machine learning. NPG Asia Mater 2022;14. [DOI: 10.1038/s41427-022-00416-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 Zhang H, Liu H, Zhang N. A Review of Microinjection Moulding of Polymeric Micro Devices. Micromachines (Basel) 2022;13:1530. [PMID: 36144153 DOI: 10.3390/mi13091530] [Reference Citation Analysis]
4 Chircov C, Bîrcă AC, Vasile BS, Oprea O, Huang K, Grumezescu AM. Microfluidic Synthesis of -NH2- and -COOH-Functionalized Magnetite Nanoparticles. Nanomaterials 2022;12:3160. [DOI: 10.3390/nano12183160] [Reference Citation Analysis]
5 Sarkari S, Khajehmohammadi M, Davari N, Li D, Yu B. The effects of process parameters on polydopamine coatings employed in tissue engineering applications. Front Bioeng Biotechnol 2022;10:1005413. [DOI: 10.3389/fbioe.2022.1005413] [Reference Citation Analysis]
6 Rao LT, Jayapiriya US, Dubey SK, Javed A, Goel S. Portable paper‐based hydrogen fuel cell with automated pencil‐stroked electrodes: Development, analysis, and performance investigation. Intl J of Energy Research. [DOI: 10.1002/er.8699] [Reference Citation Analysis]
7 Akbari Kenari M, Rezvani Ghomi E, Akbari Kenari A, Arabi SMS, Deylami J, Ramakrishna S. Biomedical applications of microfluidic devices: Achievements and challenges. Polymers for Advanced Techs. [DOI: 10.1002/pat.5847] [Reference Citation Analysis]
8 Li Z, Zhang B, Dang D, Yang X, Yang W, Liang W. A review of microfluidic-based mixing methods. Sensors and Actuators A: Physical 2022;344:113757. [DOI: 10.1016/j.sna.2022.113757] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Sahu AK, Jha S. Hybrid laser and micro milling methods for higher depth microchannel fabrication. Journal of Manufacturing Processes 2022;81:672-9. [DOI: 10.1016/j.jmapro.2022.07.018] [Reference Citation Analysis]
10 Wagner JR, Fletcher J, Morin SA. Chemical activation of commodity plastics for patterned electroless deposition of robust metallic films. Chem Commun (Camb) 2022. [PMID: 36039790 DOI: 10.1039/d2cc03848j] [Reference Citation Analysis]
11 Theel EK, Schwaminger SP. Microfluidic Approaches for Affinity-Based Exosome Separation. Int J Mol Sci 2022;23:9004. [PMID: 36012270 DOI: 10.3390/ijms23169004] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Wang S, Wang Y, Jin K, Zhang B, Peng S, Nayak AK, Pang Z. Recent advances in erythrocyte membrane-camouflaged nanoparticles for the delivery of anti-cancer therapeutics. Expert Opinion on Drug Delivery. [DOI: 10.1080/17425247.2022.2108786] [Reference Citation Analysis]
13 Monia Kabandana GK, Zhang T, Chen C. Emerging 3D printing technologies and methodologies for microfluidic development. Anal Methods 2022. [PMID: 35866586 DOI: 10.1039/d2ay00798c] [Reference Citation Analysis]
14 Allert RD, Briegel KD, Bucher DB. Advances in nano- and microscale NMR spectroscopy using diamond quantum sensors. Chem Commun (Camb) 2022;58:8165-81. [PMID: 35796253 DOI: 10.1039/d2cc01546c] [Reference Citation Analysis]
15 Florea DA, Grumezescu V, Bîrcă AC, Vasile BȘ, Mușat M, Chircov C, Stan MS, Grumezescu AM, Andronescu E, Chifiriuc MC. Design, Characterization, and Antibacterial Performance of MAPLE-Deposited Coatings of Magnesium Phosphate-Containing Silver Nanoparticles in Biocompatible Concentrations. IJMS 2022;23:7910. [DOI: 10.3390/ijms23147910] [Reference Citation Analysis]
16 Gonzalez G, Roppolo I, Pirri CF, Chiappone A. Current and emerging trends in polymeric 3D printed microfluidic devices. Additive Manufacturing 2022;55:102867. [DOI: 10.1016/j.addma.2022.102867] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
17 Xu J, Xiu S, Lian Z, Yu H, Cao J. Bioinspired materials for droplet manipulation: Principles, methods and applications. Droplet 2022;1:11-37. [DOI: 10.1002/dro2.12] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Jain V, Patel VB, Singh B, Varade D. Microfluidic device based molecular Self-Assembly structures. Journal of Molecular Liquids 2022;362:119760. [DOI: 10.1016/j.molliq.2022.119760] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Filippi M, Buchner T, Yasa O, Weirich S, Katzschmann RK. Microfluidic Tissue Engineering and Bio-Actuation. Adv Mater 2022;34:e2108427. [PMID: 35194852 DOI: 10.1002/adma.202108427] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
20 Wang B, Park B. Microfluidic Sampling and Biosensing Systems for Foodborne Escherichia coli and Salmonella. Foodborne Pathog Dis 2022;19:359-75. [PMID: 35713922 DOI: 10.1089/fpd.2021.0087] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
21 Lv H, Chen X. Intelligent control of nanoparticle synthesis through machine learning. Nanoscale 2022;14:6688-708. [PMID: 35450983 DOI: 10.1039/d2nr00124a] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
22 Cowell TW, Dobria A, Han HS. Simplified, Shear Induced Generation of Double Emulsions for Robust Compartmentalization during Single Genome Analysis. ACS Appl Mater Interfaces 2022;14:20528-37. [PMID: 35502700 DOI: 10.1021/acsami.1c22692] [Reference Citation Analysis]
23 Donia A, Furqan Shahid M, Hassan SU, Shahid R, Ahmad A, Javed A, Nawaz M, Yaqub T, Bokhari H. Integration of RT-LAMP and Microfluidic Technology for Detection of SARS-CoV-2 in Wastewater as an Advanced Point-of-Care Platform. Food Environ Virol 2022. [PMID: 35508752 DOI: 10.1007/s12560-022-09522-3] [Reference Citation Analysis]
24 Duan H, Qi W, Wang S, Zheng L, Yuan J, Lin J. Sample-in-answer-out colorimetric detection of Salmonella typhimurium using non-enzymatic cascade amplification. Analytica Chimica Acta 2022. [DOI: 10.1016/j.aca.2022.339850] [Reference Citation Analysis]
25 Li Y, Cai S, Shen H, Chen Y, Ge Z, Yang W. Recent advances in acoustic microfluidics and its exemplary applications. Biomicrofluidics 2022;16:031502. [PMID: 35712527 DOI: 10.1063/5.0089051] [Reference Citation Analysis]
26 Yang M, Sun N, Luo Y, Lai X, Li P, Zhang Z. Emergence of debubblers in microfluidics: A critical review. Biomicrofluidics 2022;16:031503. [PMID: 35757146 DOI: 10.1063/5.0088551] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Nix C, Ghassemi M, Crommen J, Fillet M. Overview on microfluidics devices for monitoring brain disorder biomarkers. TrAC Trends in Analytical Chemistry 2022. [DOI: 10.1016/j.trac.2022.116693] [Reference Citation Analysis]
28 Li X, Zhan C, Huang Q, He M, Yang C, Yang C, Huang X, Chen M, Xie X, Chen H. Smart Diaper Based on Integrated Multiplex Carbon Nanotube-Coated Electrode Array Sensors for In Situ Urine Monitoring. ACS Appl Nano Mater 2022;5:4767-78. [DOI: 10.1021/acsanm.1c04220] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Ariga K. Biomimetic and Biological Nanoarchitectonics. Int J Mol Sci 2022;23:3577. [PMID: 35408937 DOI: 10.3390/ijms23073577] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
30 Gassmann S, Jegatheeswaran S, Schleifer T, Arbabi H, Schütte H. 3D Printed PCB Microfluidics. Micromachines 2022;13:470. [DOI: 10.3390/mi13030470] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
31 Flores-Contreras EA, González-González RB, Rodríguez-Sánchez IP, Yee-de León JF, Iqbal HMN, González-González E. Microfluidics-Based Biosensing Platforms: Emerging Frontiers in Point-of-Care Testing SARS-CoV-2 and Seroprevalence. Biosensors (Basel) 2022;12:179. [PMID: 35323449 DOI: 10.3390/bios12030179] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
32 Mansour H, Soliman EA, El-bab AMF, Abdel-mawgood AL. Development of epoxy resin-based microfluidic devices using CO2 laser ablation for DNA amplification point-of-care (POC) applications. Int J Adv Manuf Technol. [DOI: 10.1007/s00170-022-08992-w] [Reference Citation Analysis]
33 Mou J, Ren Y, Wang J, Wang C, Zou Y, Lou K, Zheng Z, Zhang D. Nickel oxide nanoparticle synthesis and photocatalytic applications: evolution from conventional methods to novel microfluidic approaches. Microfluid Nanofluid 2022;26. [DOI: 10.1007/s10404-022-02534-2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
34 Zhou Q, Doman E, Schirrmann K, Chen Q, Seed E, Johnstone ED, Selvaganapathy PR, Juel A, Jensen OE, Bernabeu MO, Krüger T, Chernyavsky IL. Micro-haemodynamics at the maternal–fetal interface: experimental, theoretical and clinical perspectives. Current Opinion in Biomedical Engineering 2022. [DOI: 10.1016/j.cobme.2022.100387] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Cong H, Zhang N. Perspectives in translating microfluidic devices from laboratory prototyping into scale-up production. Biomicrofluidics 2022;16:021301. [DOI: 10.1063/5.0079045] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 4.0] [Reference Citation Analysis]
36 Grigorov E, Peykov S, Kirov B. Novel Microfluidics Device for Rapid Antibiotics Susceptibility Screening. Applied Sciences 2022;12:2198. [DOI: 10.3390/app12042198] [Reference Citation Analysis]
37 Mohammadamini F, Rahbar Shahrouzi J, Samadi M. A suspended polymeric microfluidic sensor for liquid flow rate measurement in microchannels. Sci Rep 2022;12:2642. [PMID: 35173261 DOI: 10.1038/s41598-022-06656-z] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
38 Ciriolo AG, Martínez Vázquez R, Crippa G, Devetta M, Frezzotti A, Comelli D, Valentini G, Osellame R, Vozzi C, Stagira S. Time-Resolved Imaging of Femtosecond Laser-Induced Plasma Expansion in a Nitrogen Microjet. Applied Sciences 2022;12:1978. [DOI: 10.3390/app12041978] [Reference Citation Analysis]
39 Juang YJ, Hsu SK. Fabrication of Paper-Based Microfluidics by Spray on Printed Paper. Polymers (Basel) 2022;14:639. [PMID: 35160629 DOI: 10.3390/polym14030639] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Zhang Y, Zhou A, Chen S, Lum GZ, Zhang X. A perspective on magnetic microfluidics: Towards an intelligent future. Biomicrofluidics 2022;16:011301. [DOI: 10.1063/5.0079464] [Reference Citation Analysis]
41 Kabay G, Manz A, Dincer C. Microfluidic Roadmap for Translational Nanotheranostics. Small Methods 2021;:e2101217. [PMID: 34957704 DOI: 10.1002/smtd.202101217] [Reference Citation Analysis]
42 Jaradat E, Weaver E, Meziane A, Lamprou DA. Microfluidics Technology for the Design and Formulation of Nanomedicines. Nanomaterials (Basel) 2021;11:3440. [PMID: 34947789 DOI: 10.3390/nano11123440] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
43 Lin L, Yin Y, Starostin SA, Xu H, Li C, Wu K, He C, Hessel V. Microfluidic fabrication of fluorescent nanomaterials: A review. Chemical Engineering Journal 2021;425:131511. [DOI: 10.1016/j.cej.2021.131511] [Cited by in Crossref: 9] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
44 Epps RW, Abolhasani M. Modern nanoscience: Convergence of AI, robotics, and colloidal synthesis. Applied Physics Reviews 2021;8:041316. [DOI: 10.1063/5.0061799] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
45 Rouhi O, Razavi Bazaz S, Niazmand H, Mirakhorli F, Mas-Hafi S, A Amiri H, Miansari M, Ebrahimi Warkiani M. Numerical and Experimental Study of Cross-Sectional Effects on the Mixing Performance of the Spiral Microfluidics. Micromachines (Basel) 2021;12:1470. [PMID: 34945321 DOI: 10.3390/mi12121470] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
46 Min K, Lim J, Lim JH, Hwang E, Kim Y, Lee H, Lee H, Hong S. Fabrication of Perforated PDMS Microchannel by Successive Laser Pyrolysis. Materials (Basel) 2021;14:7275. [PMID: 34885430 DOI: 10.3390/ma14237275] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
47 Wlodarczyk KL, MacPherson WN, Hand DP, Maroto-Valer MM. Manufacturing of Microfluidic Devices with Interchangeable Commercial Fiber Optic Sensors. Sensors (Basel) 2021;21:7493. [PMID: 34833567 DOI: 10.3390/s21227493] [Reference Citation Analysis]
48 Merkulova MA, Osipova NS, Maksimenko OO, Gordienko MG, Gelperina SE. Easy size control of polymer nanoparticles obtained by emulsification–evaporation technique in a microfluidic reactor. Mendeleev Communications 2021;31:899-901. [DOI: 10.1016/j.mencom.2021.11.044] [Reference Citation Analysis]
49 Ejeta F. Recent Advances of Microfluidic Platforms for Controlled Drug Delivery in Nanomedicine. Drug Des Devel Ther 2021;15:3881-91. [PMID: 34531650 DOI: 10.2147/DDDT.S324580] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
50 Marini M, Legittimo F, Torre B, Allione M, Limongi T, Scaltrito L, Pirri CF, di Fabrizio E. DNA Studies: Latest Spectroscopic and Structural Approaches. Micromachines (Basel) 2021;12:1094. [PMID: 34577737 DOI: 10.3390/mi12091094] [Reference Citation Analysis]
51 Bordbar MM, Sheini A, Hashemi P, Hajian A, Bagheri H. Disposable Paper-Based Biosensors for the Point-of-Care Detection of Hazardous Contaminations-A Review. Biosensors (Basel) 2021;11:316. [PMID: 34562906 DOI: 10.3390/bios11090316] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
52 Pečar B, Vrtačnik D, Pavlin M, Možek M. A Rapid Prototyped Thermal Mass Flowmeter. Sensors (Basel) 2021;21:5373. [PMID: 34450811 DOI: 10.3390/s21165373] [Reference Citation Analysis]
53 Zoupanou S, Volpe A, Primiceri E, Gaudiuso C, Ancona A, Ferrara F, Chiriacò MS. SMILE Platform: An Innovative Microfluidic Approach for On-Chip Sample Manipulation and Analysis in Oral Cancer Diagnosis. Micromachines (Basel) 2021;12:885. [PMID: 34442507 DOI: 10.3390/mi12080885] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
54 Kouadri A, Douroum E, Lasbet Y, Naas TT, Khelladi S, Makhlouf M. Comparative study of mixing behaviors using non-Newtonian fluid flows in passive micromixers. International Journal of Mechanical Sciences 2021;201:106472. [DOI: 10.1016/j.ijmecsci.2021.106472] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
55 Feldzensztajn M, Wierzba P, Mazikowski A. Examination of Spectral Properties of Medicinal Plant Leaves Grown in Different Lighting Conditions Based on Mint Cultivation. Sensors (Basel) 2021;21:4122. [PMID: 34203955 DOI: 10.3390/s21124122] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
56 Peyravian N, Malekzadeh Kebria M, Kiani J, Brouki Milan P, Mozafari M. CRISPR-Associated (CAS) Effectors Delivery via Microfluidic Cell-Deformation Chip. Materials (Basel) 2021;14:3164. [PMID: 34207502 DOI: 10.3390/ma14123164] [Cited by in F6Publishing: 5] [Reference Citation Analysis]
57 Niculescu AG, Chircov C, Grumezescu AM. Magnetite nanoparticles: Synthesis methods - A comparative review. Methods 2021:S1046-2023(21)00110-9. [PMID: 33915292 DOI: 10.1016/j.ymeth.2021.04.018] [Cited by in Crossref: 27] [Cited by in F6Publishing: 22] [Article Influence: 27.0] [Reference Citation Analysis]