BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Nasiri-Ansari N, Nikolopoulou C, Papoutsi K, Kyrou I, Mantzoros CS, Kyriakopoulos G, Chatzigeorgiou A, Kalotychou V, Randeva MS, Chatha K, Kontzoglou K, Kaltsas G, Papavassiliou AG, Randeva HS, Kassi E. Empagliflozin Attenuates Non-Alcoholic Fatty Liver Disease (NAFLD) in High Fat Diet Fed ApoE(-/-) Mice by Activating Autophagy and Reducing ER Stress and Apoptosis. Int J Mol Sci 2021;22:E818. [PMID: 33467546 DOI: 10.3390/ijms22020818] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Hüttl M, Markova I, Miklankova D, Zapletalova I, Poruba M, Haluzik M, Vaněčkova I, Malinska H. In a Prediabetic Model, Empagliflozin Improves Hepatic Lipid Metabolism Independently of Obesity and before Onset of Hyperglycemia. Int J Mol Sci 2021;22:11513. [PMID: 34768942 DOI: 10.3390/ijms222111513] [Reference Citation Analysis]
2 Guan PP, Cao LL, Yang Y, Wang P. Calcium Ions Aggravate Alzheimer's Disease Through the Aberrant Activation of Neuronal Networks, Leading to Synaptic and Cognitive Deficits. Front Mol Neurosci 2021;14:757515. [PMID: 34924952 DOI: 10.3389/fnmol.2021.757515] [Reference Citation Analysis]
3 Ajoolabady A, Kaplowitz N, Lebeaupin C, Kroemer G, Kaufman RJ, Malhi H, Ren J. Endoplasmic reticulum stress in liver diseases. Hepatology 2022. [PMID: 35524448 DOI: 10.1002/hep.32562] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wang Y, Ding Y, Sun P, Zhang W, Xin Q, Wang N, Niu Y, Chen Y, Luo J, Lu J, Zhou J, Xu N, Zhang Y, Xie W. Empagliflozin-Enhanced Antioxidant Defense Attenuates Lipotoxicity and Protects Hepatocytes by Promoting FoxO3a- and Nrf2-Mediated Nuclear Translocation via the CAMKK2/AMPK Pathway. Antioxidants 2022;11:799. [DOI: 10.3390/antiox11050799] [Reference Citation Analysis]
5 Liu J, Wang L, Ge L, Sun W, Song Z, Lu X, Jin C, Wu S, Yang J. Lanthanum decreased VAPB-PTPP51, BAP31-FIS1, and MFN2-MFN1 expression of mitochondria-associated membranes and induced abnormal autophagy in rat hippocampus. Food and Chemical Toxicology 2022. [DOI: 10.1016/j.fct.2022.112831] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Amer RM, Eltokhy AK, Elesawy RO, Barakat AN, Basha E, Eldeeb OS, Aboalsoud A, Elgharabawy NM, Ismail R. The Ameliorative Effect of Empagliflozin in Vigabatrin-Induced Cerebellar/Neurobehavioral Deficits: Targeting mTOR/AMPK/SIRT-1 Signaling Pathways. Molecules 2022;27:3659. [PMID: 35744783 DOI: 10.3390/molecules27123659] [Reference Citation Analysis]
7 Ma Y, Kan C, Qiu H, Liu Y, Hou N, Han F, Shi J, Sun X. Transcriptomic Analysis Reveals the Protective Effects of Empagliflozin on Lipid Metabolism in Nonalcoholic Fatty Liver Disease. Front Pharmacol 2021;12:793586. [PMID: 34992540 DOI: 10.3389/fphar.2021.793586] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 Melnikov N, Kamari Y, Kandel-kfir M, Barshack I, Ben-amotz A, Harats D, Shaish A, Harari A. β-Carotene from the Alga Dunaliella bardawil Decreases Gene Expression of Adipose Tissue Macrophage Recruitment Markers and Plasma Lipid Concentrations in Mice Fed a High-Fat Diet. Marine Drugs 2022;20:433. [DOI: 10.3390/md20070433] [Reference Citation Analysis]
9 Aragón-Herrera A, Otero-Santiago M, Anido-Varela L, Moraña-Fernández S, Campos-Toimil M, García-Caballero T, Barral L, Tarazón E, Roselló-Lletí E, Portolés M, Gualillo O, Moscoso I, Lage R, González-Juanatey JR, Feijóo-Bandín S, Lago F. The Treatment With the SGLT2 Inhibitor Empagliflozin Modifies the Hepatic Metabolome of Male Zucker Diabetic Fatty Rats Towards a Protective Profile. Front Pharmacol 2022;13:827033. [PMID: 35185578 DOI: 10.3389/fphar.2022.827033] [Reference Citation Analysis]
10 Perakakis N, Chrysafi P, Feigh M, Veidal SS, Mantzoros CS. Empagliflozin Improves Metabolic and Hepatic Outcomes in a Non-Diabetic Obese Biopsy-Proven Mouse Model of Advanced NASH. Int J Mol Sci 2021;22:6332. [PMID: 34199317 DOI: 10.3390/ijms22126332] [Reference Citation Analysis]
11 Elrakaybi A, Laubner K, Zhou Q, Hug MJ, Seufert J. Cardiovascular protection by SGLT2 inhibitors - Do anti-inflammatory mechanisms play a role? Mol Metab 2022;:101549. [PMID: 35863639 DOI: 10.1016/j.molmet.2022.101549] [Reference Citation Analysis]
12 Stachyra K, Kiepura A, Suski M, Ulatowska-Białas M, Kuś K, Wiśniewska A, Czepiel K, Majka G, Olszanecki R. Changes in the liver proteome in apoE knockout mice exposed to inhalation of silica nanoparticles indicate mitochondrial damage and impairment of ER stress responses associated with microvesicular steatosis. Environ Sci Pollut Res Int 2022. [PMID: 35906520 DOI: 10.1007/s11356-022-22179-6] [Reference Citation Analysis]
13 Zhao H, Liu H, Yang Y, Wang H. The Role of Autophagy and Pyroptosis in Liver Disorders. Int J Mol Sci 2022;23:6208. [PMID: 35682887 DOI: 10.3390/ijms23116208] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Winiarska A, Knysak M, Nabrdalik K, Gumprecht J, Stompór T. Inflammation and Oxidative Stress in Diabetic Kidney Disease: The Targets for SGLT2 Inhibitors and GLP-1 Receptor Agonists. Int J Mol Sci 2021;22:10822. [PMID: 34639160 DOI: 10.3390/ijms221910822] [Reference Citation Analysis]
15 Vairetti M, Colucci G, Ferrigno A. Innovative Molecular Target and Therapeutic Approaches in Nonalcoholic Fatty Liver Disease/Nonalcoholic Steatohepatitis (NAFLD/NASH) 2.0. IJMS 2022;23:7894. [DOI: 10.3390/ijms23147894] [Reference Citation Analysis]
16 Zhang Y, Li K, Kong A, Zhou Y, Chen D, Gu J, Shi H. Dysregulation of autophagy acts as a pathogenic mechanism of non-alcoholic fatty liver disease (NAFLD) induced by common environmental pollutants. Ecotoxicol Environ Saf 2021;217:112256. [PMID: 33901779 DOI: 10.1016/j.ecoenv.2021.112256] [Reference Citation Analysis]
17 Flessa CM, Kyrou I, Nasiri-Ansari N, Kaltsas G, Papavassiliou AG, Kassi E, Randeva HS. Endoplasmic Reticulum Stress and Autophagy in the Pathogenesis of Non-alcoholic Fatty Liver Disease (NAFLD): Current Evidence and Perspectives. Curr Obes Rep 2021;10:134-61. [PMID: 33751456 DOI: 10.1007/s13679-021-00431-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
18 Fukushima K, Kitamura S, Tsuji K, Wada J. Sodium-Glucose Cotransporter 2 Inhibitors Work as a "Regulator" of Autophagic Activity in Overnutrition Diseases. Front Pharmacol 2021;12:761842. [PMID: 34744742 DOI: 10.3389/fphar.2021.761842] [Reference Citation Analysis]
19 Bode D, Semmler L, Oeing CU, Alogna A, Schiattarella GG, M Pieske B, Heinzel FR, Hohendanner F. Implications of SGLT Inhibition on Redox Signalling in Atrial Fibrillation. Int J Mol Sci 2021;22:5937. [PMID: 34073033 DOI: 10.3390/ijms22115937] [Reference Citation Analysis]
20 Mei Y, Hu H, Deng L, Sun X, Tan W. Therapeutic effects of isosteviol sodium on non-alcoholic fatty liver disease by regulating autophagy via Sirt1/AMPK pathway. Sci Rep 2022;12:12857. [PMID: 35896572 DOI: 10.1038/s41598-022-16119-0] [Reference Citation Analysis]
21 Wang Z, Ye M, Zhang XJ, Zhang P, Cai J, Li H, She ZG. Impact of NAFLD and its pharmacotherapy on lipid profile and CVD. Atherosclerosis 2022;355:30-44. [PMID: 35872444 DOI: 10.1016/j.atherosclerosis.2022.07.010] [Reference Citation Analysis]
22 Flessa C, Kyrou I, Nasiri‐ansari N, Kaltsas G, Kassi E, Randeva HS. Endoplasmic reticulum stress in nonalcoholic (metabolic associated) fatty liver disease (NAFLD/MAFLD). J of Cellular Biochemistry. [DOI: 10.1002/jcb.30247] [Reference Citation Analysis]
23 Androutsakos T, Nasiri-Ansari N, Bakasis AD, Kyrou I, Efstathopoulos E, Randeva HS, Kassi E. SGLT-2 Inhibitors in NAFLD: Expanding Their Role beyond Diabetes and Cardioprotection. Int J Mol Sci 2022;23:3107. [PMID: 35328527 DOI: 10.3390/ijms23063107] [Reference Citation Analysis]
24 Feijóo-Bandín S, Aragón-Herrera A, Otero-Santiago M, Anido-Varela L, Moraña-Fernández S, Tarazón E, Roselló-Lletí E, Portolés M, Gualillo O, González-Juanatey JR, Lago F. Role of Sodium-Glucose Co-Transporter 2 Inhibitors in the Regulation of Inflammatory Processes in Animal Models. Int J Mol Sci 2022;23:5634. [PMID: 35628443 DOI: 10.3390/ijms23105634] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Jiang Y, Yang W, Ding J, Ji J, Wu L, Zheng Y, Li Y, Cheng Z, Zhang J, Yu Q, Feng J, Li J, Wu J, Zhou Y, Guo C, Mandard S. Luteolin Pretreatment Attenuates Hepatic Ischemia-Reperfusion Injury in Mice by Inhibiting Inflammation, Autophagy, and Apoptosis via the ERK/PPARα Pathway. PPAR Research 2022;2022:1-15. [DOI: 10.1155/2022/8161946] [Reference Citation Analysis]
26 Chang GR, Lin WL, Lin TC, Liao HJ, Lu YW. The Ameliorative Effects of Saikosaponin in Thioacetamide-Induced Liver Injury and Non-Alcoholic Fatty Liver Disease in Mice. Int J Mol Sci 2021;22:11383. [PMID: 34768813 DOI: 10.3390/ijms222111383] [Reference Citation Analysis]
27 Tian C, Liu Y, Li Z, Zhu P, Zhao M. Mitochondria Related Cell Death Modalities and Disease. Front Cell Dev Biol 2022;10:832356. [DOI: 10.3389/fcell.2022.832356] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Huang WC, Xu JW, Li S, Ng XE, Tung YT. Effects of exercise on high-fat diet-induced non-alcoholic fatty liver disease and lipid metabolism in ApoE knockout mice. Nutr Metab (Lond) 2022;19:10. [PMID: 35172845 DOI: 10.1186/s12986-022-00644-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
29 Campeau MA, Leask RL. Empagliflozin mitigates endothelial inflammation and attenuates endoplasmic reticulum stress signaling caused by sustained glycocalyx disruption. Sci Rep 2022;12:12681. [PMID: 35879337 DOI: 10.1038/s41598-022-16763-6] [Reference Citation Analysis]
30 Mirarchi L, Amodeo S, Citarrella R, Licata A, Soresi M, Giannitrapani L. SGLT2 Inhibitors as the Most Promising Influencers on the Outcome of Non-Alcoholic Fatty Liver Disease. IJMS 2022;23:3668. [DOI: 10.3390/ijms23073668] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
31 Hojná S, Rauchová H, Malínská H, Marková I, Hüttl M, Papoušek F, Behuliak M, Miklánková D, Vaňourková Z, Neckář J, Kadlecová M, Kujal P, Zicha J, Vaněčková I. Antihypertensive and metabolic effects of empagliflozin in Ren-2 transgenic rats, an experimental non-diabetic model of hypertension. Biomed Pharmacother 2021;144:112246. [PMID: 34601191 DOI: 10.1016/j.biopha.2021.112246] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Jing Y, Yang R, Chen W, Ye Q. Anti-Arrhythmic Effects of Sodium-Glucose Co-Transporter 2 Inhibitors. Front Pharmacol 2022;13:898718. [DOI: 10.3389/fphar.2022.898718] [Reference Citation Analysis]
33 Luo J, Sun P, Wang Y, Chen Y, Niu Y, Ding Y, Xu N, Zhang Y, Xie W. Dapagliflozin attenuates steatosis in livers of high-fat diet-induced mice and oleic acid-treated L02 cells via regulating AMPK/mTOR pathway. Eur J Pharmacol 2021;907:174304. [PMID: 34224699 DOI: 10.1016/j.ejphar.2021.174304] [Reference Citation Analysis]
34 Zhou L, Shen H, Li X, Wang H. Endoplasmic reticulum stress in innate immune cells - a significant contribution to non-alcoholic fatty liver disease. Front Immunol 2022;13:951406. [DOI: 10.3389/fimmu.2022.951406] [Reference Citation Analysis]
35 Ala M, Eftekhar SP. Target Sestrin2 to Rescue the Damaged Organ: Mechanistic Insight into Its Function. Oxid Med Cell Longev 2021;2021:8790369. [PMID: 34765085 DOI: 10.1155/2021/8790369] [Reference Citation Analysis]
36 Makri ES, Goulas A, Polyzos SA. Sodium-glucose co-transporter 2 inhibitors in nonalcoholic fatty liver disease. Eur J Pharmacol 2021;907:174272. [PMID: 34147478 DOI: 10.1016/j.ejphar.2021.174272] [Reference Citation Analysis]