BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Gurung R, Choong AM, Woo CC, Foo R, Sorokin V. Genetic and Epigenetic Mechanisms Underlying Vascular Smooth Muscle Cell Phenotypic Modulation in Abdominal Aortic Aneurysm. Int J Mol Sci 2020;21:E6334. [PMID: 32878347 DOI: 10.3390/ijms21176334] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
Number Citing Articles
1 Wang S, Wang J, Cai D, Li X, Zhong L, He X, Lin Z, Lai Y, Zheng H, Zhou Y, Xiao Z, Liao W, Liao Y, Xiu J, Bin J. Reactive oxygen species-induced long intergenic noncoding RNA p21 accelerates abdominal aortic aneurysm formation by promoting secretary smooth muscle cell phenotypes. J Mol Cell Cardiol 2023;174:63-76. [PMID: 36436251 DOI: 10.1016/j.yjmcc.2022.11.002] [Reference Citation Analysis]
2 Litvinova MS, Khaisheva LA, Shlyk SV. The relationship of fibroblast growth factor 23 with calcification of the thoracic aorta according to the results of multislice computed tomography in patients with resistant arterial hypertension. jour 2022;3:40-47. [DOI: 10.21886/2712-8156-2022-3-4-40-47] [Reference Citation Analysis]
3 Gao J, Chen Y, Wang H, Li X, Li K, Xu Y, Xie X, Guo Y, Yang N, Zhang X, Ma D, Lu HS, Shen YH, Liu Y, Zhang J, Chen YE, Daugherty A, Wang DW, Zheng L. Gasdermin D Deficiency in Vascular Smooth Muscle Cells Ameliorates Abdominal Aortic Aneurysm Through Reducing Putrescine Synthesis. Adv Sci (Weinh) 2022;:e2204038. [PMID: 36567267 DOI: 10.1002/advs.202204038] [Reference Citation Analysis]
4 Daoud F, Arévalo Martínez M, Holst J, Holmberg J, Albinsson S, Swärd K. Role of smooth muscle YAP and TAZ in protection against phenotypic modulation, inflammation, and aneurysm development. Biochemical Pharmacology 2022;206:115307. [DOI: 10.1016/j.bcp.2022.115307] [Reference Citation Analysis]
5 Ling X, Jie W, Qin X, Zhang S, Shi K, Li T, Guo J. Gut microbiome sheds light on the development and treatment of abdominal aortic aneurysm. Front Cardiovasc Med 2022;9:1063683. [PMID: 36505348 DOI: 10.3389/fcvm.2022.1063683] [Reference Citation Analysis]
6 Wang K, Kan Q, Ye Y, Qiu J, Huang L, Wu R, Yao C. Novel insight of N6-methyladenosine modified subtypes in abdominal aortic aneurysm. Front Genet 2022;13. [DOI: 10.3389/fgene.2022.1055396] [Reference Citation Analysis]
7 Li J, Ma S, Jia X, Bu Y, Zhou T, Zhang L, Qiu M, Wang X. Rivaroxaban in patients with abdominal aortic aneurysm and high-sensitivity C-reactive protein elevation (BANBOO): study protocol for a randomized, controlled trial.. [DOI: 10.21203/rs.3.rs-2200813/v1] [Reference Citation Analysis]
8 Wang J, Tian X, Yan C, Wu H, Bu Y, Li J, Liu D, Han Y. TCF7L1 Accelerates Smooth Muscle Cell Phenotypic Switching and Aggravates Abdominal Aortic Aneurysms. JACC: Basic to Translational Science 2022. [DOI: 10.1016/j.jacbts.2022.07.012] [Reference Citation Analysis]
9 Yang S, Chen L, Wang Z, Chen J, Ni Q, Guo X, Liu W, Lv L, Xue G. Neutrophil Extracellular Traps Induce Abdominal Aortic Aneurysm Formation by Promoting the Synthetic and Proinflammatory Smooth Muscle Cell Phenotype via Hippo-YAP Pathway. Translational Research 2022. [DOI: 10.1016/j.trsl.2022.11.010] [Reference Citation Analysis]
10 Molla MR, Shimizu A, Komeno M, Rahman NIA, Soh JEC, Nguyen LKC, Khan MR, Tesega WW, Chen S, Pang X, Tanaka-Okamoto M, Takashima N, Sato A, Suzuki T, Ogita H. Vascular smooth muscle RhoA counteracts abdominal aortic aneurysm formation by modulating MAP4K4 activity. Commun Biol 2022;5:1071. [PMID: 36207400 DOI: 10.1038/s42003-022-04042-z] [Reference Citation Analysis]
11 Wang K, Song Y, Li H, Song J, Wang S. Identification of differentially expressed ferroptosis-related genes in abdominal aortic aneurysm: Bioinformatics analysis. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.991613] [Reference Citation Analysis]
12 Wang D, Hao X, Jia L, Jing Y, Jiang B, Xin S. Cellular senescence and abdominal aortic aneurysm: From pathogenesis to therapeutics. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.999465] [Reference Citation Analysis]
13 Zhou H, Wang L, Liu S, Wang W. The role of phosphoinositide 3-kinases in immune-inflammatory responses: potential therapeutic targets for abdominal aortic aneurysm. Cell Cycle 2022;:1-26. [PMID: 35792922 DOI: 10.1080/15384101.2022.2094577] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Wu Y, Jiang D, Zhang H, Yin F, Guo P, Zhang X, Bian C, Chen C, Li S, Yin Y, Böckler D, Zhang J, Han Y. N1-Methyladenosine (m1A) Regulation Associated With the Pathogenesis of Abdominal Aortic Aneurysm Through YTHDF3 Modulating Macrophage Polarization. Front Cardiovasc Med 2022;9. [DOI: 10.3389/fcvm.2022.883155] [Reference Citation Analysis]
15 Liu L, Jouve C, Henry J, Berrandou T, Hulot J, Georges A, Bouatia-naji N. Genomic, transcriptomic and proteomic depiction of iPSC-derived smooth muscle cells as emerging cellular models for arterial diseases.. [DOI: 10.1101/2022.05.01.490058] [Reference Citation Analysis]
16 Weng Y, Lou J, Bao Y, Cai C, Zhu K, Du C, Chen X, Tang L. Single-Cell RNA Sequencing Technology Revealed the Pivotal Role of Fibroblast Heterogeneity in Angiotensin II-Induced Abdominal Aortic Aneurysms. DNA Cell Biol 2022. [PMID: 35451888 DOI: 10.1089/dna.2021.0923] [Reference Citation Analysis]
17 Cheng X, Hu Y, Yang T, Wu N, Wang X, Jiang D. Reactive Oxygen Species and Oxidative Stress in Vascular-Related Diseases. Oxidative Medicine and Cellular Longevity 2022;2022:1-11. [DOI: 10.1155/2022/7906091] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
18 Chen M, Li F, Jiang Q, Zhang W, Li Z, Tang W, Ali L. Role of miR-181b/Notch1 Axis in circ_TNPO1 Promotion of Proliferation and Migration of Atherosclerotic Vascular Smooth Muscle Cells. Journal of Healthcare Engineering 2022;2022:1-12. [DOI: 10.1155/2022/4086935] [Reference Citation Analysis]
19 Díaz Del Campo LS, Rodrigues-Díez R, Salaices M, Briones AM, García-Redondo AB. Specialized Pro-Resolving Lipid Mediators: New Therapeutic Approaches for Vascular Remodeling. Int J Mol Sci 2022;23:3592. [PMID: 35408952 DOI: 10.3390/ijms23073592] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
20 Litvinova MS, Khaisheva LA, Shlyk SV, Aboyan IA. Vascular calcification and fibroblast growth factor in resistant hypertension. Arter gipertenz 2022;28:157-166. [DOI: 10.18705/1607-419x-2022-28-2-157-166] [Reference Citation Analysis]
21 Nenna A, Loreni F, Giacinto O, Chello C, Nappi P, Chello M, Nappi F. miRNAs in Cardiac Myxoma: New Pathologic Findings for Potential Therapeutic Opportunities. Int J Mol Sci 2022;23:3309. [PMID: 35328730 DOI: 10.3390/ijms23063309] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
22 Qian G, Adeyanju O, Olajuyin A, Guo X. Abdominal Aortic Aneurysm Formation with a Focus on Vascular Smooth Muscle Cells. Life 2022;12:191. [DOI: 10.3390/life12020191] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
23 Mangum K, Gallagher K, Davis FM. The Role of Epigenetic Modifications in Abdominal Aortic Aneurysm Pathogenesis. Biomolecules 2022;12:172. [DOI: 10.3390/biom12020172] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
24 Si K, Lu D, Tian J. Integrated analysis and the identification of a circRNA-miRNA-mRNA network in the progression of abdominal aortic aneurysm. PeerJ 2021;9:e12682. [PMID: 35036156 DOI: 10.7717/peerj.12682] [Reference Citation Analysis]
25 Zhang Y, Li L, Ma L. Integrative analysis of transcriptome-wide association study and mRNA expression profile identified candidate genes and pathways associated with aortic aneurysm and dissection. Gene 2022;808:145993. [PMID: 34626721 DOI: 10.1016/j.gene.2021.145993] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
26 Martín Giménez VM, Chuffa LGA, Simão VA, Reiter RJ, Manucha W. Protective actions of vitamin D, anandamide and melatonin during vascular inflammation: Epigenetic mechanisms involved. Life Sci 2022;288:120191. [PMID: 34856208 DOI: 10.1016/j.lfs.2021.120191] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
27 Lu H, Du W, Ren L, Hamblin MH, Becker RC, Chen YE, Fan Y. Vascular Smooth Muscle Cells in Aortic Aneurysm: From Genetics to Mechanisms. J Am Heart Assoc 2021;:e023601. [PMID: 34796717 DOI: 10.1161/JAHA.121.023601] [Cited by in Crossref: 15] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
28 Chen Y, Qin Z, Wang Y, Li X, Zheng Y, Liu Y. Role of Inflammation in Vascular Disease-Related Perivascular Adipose Tissue Dysfunction. Front Endocrinol (Lausanne) 2021;12:710842. [PMID: 34456867 DOI: 10.3389/fendo.2021.710842] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
29 Shvetsova AA, Gaynullina DK, Tarasova OS, Schubert R. Remodeling of Arterial Tone Regulation in Postnatal Development: Focus on Smooth Muscle Cell Potassium Channels. Int J Mol Sci 2021;22:5413. [PMID: 34063769 DOI: 10.3390/ijms22115413] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
30 Pedrosa JF, Brant LCC, de Aquino SA, Ribeiro AL, Barreto SM. Segmental Evaluation of Thoracic Aortic Calcium and Their Relations with Cardiovascular Risk Factors in the Brazilian Longitudinal Study of Adult Health (ELSA-Brasil). Cells 2021;10:1243. [PMID: 34070075 DOI: 10.3390/cells10051243] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Singh TP, Field MA, Bown MJ, Jones GT, Golledge J. Systematic review of genome-wide association studies of abdominal aortic aneurysm. Atherosclerosis 2021;327:39-48. [PMID: 34038762 DOI: 10.1016/j.atherosclerosis.2021.05.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
32 Wu J, Wang W, Chen Z, Xu F, Zheng Y. Proteomics applications in biomarker discovery and pathogenesis for abdominal aortic aneurysm. Expert Rev Proteomics 2021;18:305-14. [PMID: 33840337 DOI: 10.1080/14789450.2021.1916473] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
33 Chen S, Ji L, Chen M, Yang D, Zhou J, Zheng Y. Weighted miRNA co-expression network reveals potential roles of apoptosis related pathways and crucial genes in thoracic aortic aneurysm. J Thorac Dis 2021;13:2776-89. [PMID: 34164170 DOI: 10.21037/jtd-20-3601] [Reference Citation Analysis]
34 Hemmings KE, Riches-Suman K, Bailey MA, O'Regan DJ, Turner NA, Porter KE. Role of MicroRNA-145 in DNA Damage Signalling and Senescence in Vascular Smooth Muscle Cells of Type 2 Diabetic Patients. Cells 2021;10:919. [PMID: 33923614 DOI: 10.3390/cells10040919] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
35 Zalewski DP, Ruszel KP, Stępniewski A, Gałkowski D, Bogucki J, Kołodziej P, Szymańska J, Płachno BJ, Zubilewicz T, Feldo M, Kocki J, Bogucka-Kocka A. Identification of Transcriptomic Differences between Lower Extremities Arterial Disease, Abdominal Aortic Aneurysm and Chronic Venous Disease in Peripheral Blood Mononuclear Cells Specimens. Int J Mol Sci 2021;22:3200. [PMID: 33801150 DOI: 10.3390/ijms22063200] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Khashkhusha A, Munir W, Bashir M, Idhrees M. Thoracic and abdominal aortic aneurysms: exploring their contrast and genetic associations. J Cardiovasc Surg (Torino) 2021;62:211-9. [PMID: 33565748 DOI: 10.23736/S0021-9509.21.11810-5] [Reference Citation Analysis]
37 Bennett M, Ulitsky I, Alloza I, Vandenbroeck K, Miscianinov V, Mahmoud AD, Ballantyne M, Rodor J, Baker AH. Novel Transcript Discovery Expands the Repertoire of Pathologically-Associated, Long Non-Coding RNAs in Vascular Smooth Muscle Cells. Int J Mol Sci 2021;22:1484. [PMID: 33540814 DOI: 10.3390/ijms22031484] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]