BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Dhakal S, Kushairi N, Phan CW, Adhikari B, Sabaratnam V, Macreadie I. Dietary Polyphenols: A Multifactorial Strategy to Target Alzheimer's Disease. Int J Mol Sci 2019;20:E5090. [PMID: 31615073 DOI: 10.3390/ijms20205090] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Pyrzanowska J. Pharmacological activity of Aspalathus linearis extracts: pre-clinical research in view of prospective neuroprotection. Nutritional Neuroscience. [DOI: 10.1080/1028415x.2022.2051955] [Reference Citation Analysis]
2 Kubicova L, Bachmann G, Weckwerth W, Chobot V. (±)-Catechin—A Mass-Spectrometry-Based Exploration Coordination Complex Formation with FeII and FeIII. Cells 2022;11:958. [DOI: 10.3390/cells11060958] [Reference Citation Analysis]
3 Afewerky HK, Li H, Zhang T, Li X, Mahaman YAR, Duan L, Qin P, Zheng J, Pei L, Lu Y. Sodium-calcium exchanger isoform-3 targeted Withania somnifera (L.) Dunal therapeutic intervention ameliorates cognition in the 5xFAD mouse model of Alzheimer's disease. Sci Rep 2022;12:1537. [PMID: 35087161 DOI: 10.1038/s41598-022-05568-2] [Reference Citation Analysis]
4 Freyssin A, Rioux Bilan A, Fauconneau B, Galineau L, Serrière S, Tauber C, Perrin F, Guillard J, Chalon S, Page G. Trans ε-Viniferin Decreases Amyloid Deposits With Greater Efficiency Than Resveratrol in an Alzheimer's Mouse Model. Front Neurosci 2021;15:803927. [PMID: 35069106 DOI: 10.3389/fnins.2021.803927] [Reference Citation Analysis]
5 Kundo NK, Manik MIN, Biswas K, Khatun R, Al-Amin MY, Alam AHMK, Tanaka T, Sadik G. Identification of Polyphenolics from Loranthus globosus as Potential Inhibitors of Cholinesterase and Oxidative Stress for Alzheimer's Disease Treatment. Biomed Res Int 2021;2021:9154406. [PMID: 34805409 DOI: 10.1155/2021/9154406] [Reference Citation Analysis]
6 Naomi R, Shafie NH, Kaniappan P, Bahari H. An Interactive Review on the Role of Tocotrienols in the Neurodegenerative Disorders. Front Nutr 2021;8:754086. [PMID: 34765631 DOI: 10.3389/fnut.2021.754086] [Reference Citation Analysis]
7 Xu H, Zhou Q, Liu B, Cheng KW, Chen F, Wang M. Neuroprotective Potential of Mung Bean (Vigna radiata L.) Polyphenols in Alzheimer's Disease: A Review. J Agric Food Chem 2021;69:11554-71. [PMID: 34551518 DOI: 10.1021/acs.jafc.1c04049] [Reference Citation Analysis]
8 Dhakal S, Ramsland PA, Adhikari B, Macreadie I. Trans-Chalcone Plus Baicalein Synergistically Reduce Intracellular Amyloid Beta (Aβ42) and Protect from Aβ42 Induced Oxidative Damage in Yeast Models of Alzheimer's Disease. Int J Mol Sci 2021;22:9456. [PMID: 34502362 DOI: 10.3390/ijms22179456] [Reference Citation Analysis]
9 Singh K, Nassar N, Bachari A, Schanknecht E, Telukutla S, Zomer R, Piva TJ, Mantri N. The Pathophysiology and the Therapeutic Potential of Cannabinoids in Prostate Cancer. Cancers (Basel) 2021;13:4107. [PMID: 34439262 DOI: 10.3390/cancers13164107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Gegunde S, Alfonso A, Alvariño R, Pérez-Fuentes N, Botana LM. Anhydroexfoliamycin, a Streptomyces Secondary Metabolite, Mitigates Microglia-Driven Inflammation. ACS Chem Neurosci 2021;12:2336-46. [PMID: 34110771 DOI: 10.1021/acschemneuro.1c00033] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
11 Dash R, Jahan I, Ali MC, Mitra S, Munni YA, Timalsina B, Hannan MA, Moon IS. Potential roles of natural products in the targeting of proteinopathic neurodegenerative diseases. Neurochem Int 2021;145:105011. [PMID: 33711400 DOI: 10.1016/j.neuint.2021.105011] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 5.0] [Reference Citation Analysis]
12 Reyes-Corral M, Sola-Idígora N, de la Puerta R, Montaner J, Ybot-González P. Nutraceuticals in the Prevention of Neonatal Hypoxia-Ischemia: A Comprehensive Review of their Neuroprotective Properties, Mechanisms of Action and Future Directions. Int J Mol Sci 2021;22:2524. [PMID: 33802413 DOI: 10.3390/ijms22052524] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Avanza MV, Álvarez-rivera G, Cifuentes A, Mendiola JA, Ibáñez E. Phytochemical and Functional Characterization of Phenolic Compounds from Cowpea (Vigna unguiculata (L.) Walp.) Obtained by Green Extraction Technologies. Agronomy 2021;11:162. [DOI: 10.3390/agronomy11010162] [Cited by in Crossref: 8] [Cited by in F6Publishing: 2] [Article Influence: 8.0] [Reference Citation Analysis]
14 Dhakal S, Macreadie I. Potential contributions of trace amines in Alzheimer's disease and therapeutic prospects. Neural Regen Res 2021;16:1394-6. [PMID: 33318424 DOI: 10.4103/1673-5374.300985] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
15 Dhakal S. ‘The awesome power of yeast’ in Alzheimer’s disease research. Microbiol Aust 2021;42:130. [DOI: 10.1071/ma21034] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Kubicova L, Chobot V. Potential of kynurenine metabolites in drug development against neurodegenerative diseases. Neural Regen Res 2021;16:308-9. [PMID: 32859788 DOI: 10.4103/1673-5374.290897] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Ullah R, Ikram M, Park TJ, Ahmad R, Saeed K, Alam SI, Rehman IU, Khan A, Khan I, Jo MG, Kim MO. Vanillic Acid, a Bioactive Phenolic Compound, Counteracts LPS-Induced Neurotoxicity by Regulating c-Jun N-Terminal Kinase in Mouse Brain. Int J Mol Sci 2020;22:E361. [PMID: 33396372 DOI: 10.3390/ijms22010361] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
18 Félix F, Oliveira CCV, Cabrita E. Antioxidants in Fish Sperm and the Potential Role of Melatonin. Antioxidants (Basel) 2020;10:E36. [PMID: 33396234 DOI: 10.3390/antiox10010036] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
19 Chobot V, Hadacek F, Bachmann G, Weckwerth W, Kubicova L. In Vitro Evaluation of Pro- and Antioxidant Effects of Flavonoid Tricetin in Comparison to Myricetin. Molecules 2020;25:E5850. [PMID: 33322312 DOI: 10.3390/molecules25245850] [Reference Citation Analysis]
20 Gunesch S, Soriano-Castell D, Lamer S, Schlosser A, Maher P, Decker M. Development and Application of a Chemical Probe Based on a Neuroprotective Flavonoid Hybrid for Target Identification Using Activity-Based Protein Profiling. ACS Chem Neurosci 2020;11:3823-37. [PMID: 33124812 DOI: 10.1021/acschemneuro.0c00589] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
21 Dhakal S, Macreadie I. Protein Homeostasis Networks and the Use of Yeast to Guide Interventions in Alzheimer's Disease. Int J Mol Sci 2020;21:E8014. [PMID: 33126501 DOI: 10.3390/ijms21218014] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
22 Kushairi N, Tarmizi NAKA, Phan CW, Macreadie I, Sabaratnam V, Naidu M, David P. Modulation of neuroinflammatory pathways by medicinal mushrooms, with particular relevance to Alzheimer's disease. Trends in Food Science & Technology 2020;104:153-62. [DOI: 10.1016/j.tifs.2020.07.029] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Dhakal S, Macreadie I. Tyramine and Amyloid Beta 42: A Toxic Synergy. Biomedicines 2020;8:E145. [PMID: 32486277 DOI: 10.3390/biomedicines8060145] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]