BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bandet CL, Tan-Chen S, Bourron O, Le Stunff H, Hajduch E. Sphingolipid Metabolism: New Insight into Ceramide-Induced Lipotoxicity in Muscle Cells. Int J Mol Sci 2019;20:E479. [PMID: 30678043 DOI: 10.3390/ijms20030479] [Cited by in Crossref: 36] [Cited by in F6Publishing: 35] [Article Influence: 12.0] [Reference Citation Analysis]
Number Citing Articles
1 Hou XW, Wang Y, Ke C, Pan CW. Metabolomics facilitates the discovery of metabolic profiles and pathways for myopia: A systematic review. Eye (Lond) 2022. [PMID: 35322213 DOI: 10.1038/s41433-022-02019-0] [Reference Citation Analysis]
2 Alatibi KI, Wehbe Z, Spiekerkoetter U, Tucci S. Sex-specific perturbation of complex lipids in response to medium-chain fatty acids in very long-chain acyl-CoA dehydrogenase deficiency. FEBS J 2020;287:3511-25. [PMID: 31971349 DOI: 10.1111/febs.15221] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
3 Bryndina IG, Shalagina MN, Protopopov VA, Sekunov AV, Zefirov AL, Zakirjanova GF, Petrov AM. Early Lipid Raft-Related Changes: Interplay between Unilateral Denervation and Hindlimb Suspension. Int J Mol Sci 2021;22:2239. [PMID: 33668129 DOI: 10.3390/ijms22052239] [Reference Citation Analysis]
4 He Q, Bo J, Shen R, Li Y, Zhang Y, Zhang J, Yang J, Liu Y, Chiefari E. S1P Signaling Pathways in Pathogenesis of Type 2 Diabetes. Journal of Diabetes Research 2021;2021:1-12. [DOI: 10.1155/2021/1341750] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
5 Zywno H, Bzdega W, Kolakowski A, Kurzyna P, Harasim-Symbor E, Sztolsztener K, Chabowski A, Konstantynowicz-Nowicka K. The Influence of Coumestrol on Sphingolipid Signaling Pathway and Insulin Resistance Development in Primary Rat Hepatocytes. Biomolecules 2021;11:268. [PMID: 33673122 DOI: 10.3390/biom11020268] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 5.0] [Reference Citation Analysis]
6 Sellin J, Fülle JB, Thiele C, Bauer R, Bülow MH. Free fatty acid determination as a tool for modeling metabolic diseases in Drosophila. J Insect Physiol 2020;126:104090. [PMID: 32730782 DOI: 10.1016/j.jinsphys.2020.104090] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
7 Bonilha I, Hajduch E, Luchiari B, Nadruz W, Le Goff W, Sposito AC. The Reciprocal Relationship between LDL Metabolism and Type 2 Diabetes Mellitus. Metabolites 2021;11:807. [PMID: 34940565 DOI: 10.3390/metabo11120807] [Reference Citation Analysis]
8 Tan-Chen S, Guitton J, Bourron O, Le Stunff H, Hajduch E. Sphingolipid Metabolism and Signaling in Skeletal Muscle: From Physiology to Physiopathology. Front Endocrinol (Lausanne) 2020;11:491. [PMID: 32849282 DOI: 10.3389/fendo.2020.00491] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
9 Juszczak F, Caron N, Mathew AV, Declèves AE. Critical Role for AMPK in Metabolic Disease-Induced Chronic Kidney Disease. Int J Mol Sci 2020;21:E7994. [PMID: 33121167 DOI: 10.3390/ijms21217994] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
10 Livshits G, Kalinkovich A. Inflammaging as a common ground for the development and maintenance of sarcopenia, obesity, cardiomyopathy and dysbiosis. Ageing Res Rev 2019;56:100980. [PMID: 31726228 DOI: 10.1016/j.arr.2019.100980] [Cited by in Crossref: 55] [Cited by in F6Publishing: 42] [Article Influence: 18.3] [Reference Citation Analysis]
11 Tucci S. An Altered Sphingolipid Profile as a Risk Factor for Progressive Neurodegeneration in Long-Chain 3-Hydroxyacyl-CoA Deficiency (LCHADD). IJMS 2022;23:7144. [DOI: 10.3390/ijms23137144] [Reference Citation Analysis]
12 Keppley LJW, Walker SJ, Gademsey AN, Smith JP, Keller SR, Kester M, Fox TE. Nervonic acid limits weight gain in a mouse model of diet-induced obesity. FASEB J 2020;34:15314-26. [PMID: 32959931 DOI: 10.1096/fj.202000525R] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
13 Magnan C, Le Stunff H. Role of hypothalamic de novo ceramides synthesis in obesity and associated metabolic disorders. Mol Metab 2021;53:101298. [PMID: 34273578 DOI: 10.1016/j.molmet.2021.101298] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Blackburn ML, Ono-Moore KD, Sobhi HF, Adams SH. Carnitine palmitoyltransferase 2 knockout potentiates palmitate-induced insulin resistance in C2C12 myotubes. Am J Physiol Endocrinol Metab 2020;319:E265-75. [PMID: 32459525 DOI: 10.1152/ajpendo.00515.2019] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
15 Terao R, Kaneko H. Lipid Signaling in Ocular Neovascularization. Int J Mol Sci 2020;21:E4758. [PMID: 32635437 DOI: 10.3390/ijms21134758] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
16 Consitt LA, Dudley C, Saxena G. Impact of Endurance and Resistance Training on Skeletal Muscle Glucose Metabolism in Older Adults. Nutrients 2019;11:E2636. [PMID: 31684154 DOI: 10.3390/nu11112636] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
17 Opazo-Ríos L, Mas S, Marín-Royo G, Mezzano S, Gómez-Guerrero C, Moreno JA, Egido J. Lipotoxicity and Diabetic Nephropathy: Novel Mechanistic Insights and Therapeutic Opportunities. Int J Mol Sci 2020;21:E2632. [PMID: 32290082 DOI: 10.3390/ijms21072632] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 11.5] [Reference Citation Analysis]
18 Mendham AE, Goedecke JH, Zeng Y, Larsen S, George C, Hauksson J, Fortuin-de Smidt MC, Chibalin AV, Olsson T, Chorell E. Exercise training improves mitochondrial respiration and is associated with an altered intramuscular phospholipid signature in women with obesity. Diabetologia 2021;64:1642-59. [PMID: 33770195 DOI: 10.1007/s00125-021-05430-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
19 Błachnio-Zabielska AU, Roszczyc-Owsiejczuk K, Imierska M, Pogodzińska K, Rogalski P, Daniluk J, Zabielski P. CerS1 but Not CerS5 Gene Silencing, Improves Insulin Sensitivity and Glucose Uptake in Skeletal Muscle. Cells 2022;11:206. [PMID: 35053322 DOI: 10.3390/cells11020206] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
20 Walls SM, Chatfield DA, Ocorr K, Harris GL, Bodmer R. Systemic and heart autonomous effects of sphingosine Δ4 desaturase deficiency in lipotoxic cardiac pathophysiology. Dis Model Mech 2020;13:dmm043083. [PMID: 32641420 DOI: 10.1242/dmm.043083] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
21 Carter CS, Justice JN, Thompson L. Lipotoxicity, aging, and muscle contractility: does fiber type matter? Geroscience 2019;41:297-308. [PMID: 31227962 DOI: 10.1007/s11357-019-00077-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
22 Sun H, Sherrier M, Li H. Skeletal Muscle and Bone - Emerging Targets of Fibroblast Growth Factor-21. Front Physiol 2021;12:625287. [PMID: 33762965 DOI: 10.3389/fphys.2021.625287] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
23 Kenéz Á, Bäßler SC, Jorge-smeding E, Huber K. Ceramide metabolism associated with chronic dietary nutrient surplus and diminished insulin sensitivity in the liver, muscle, and adipose tissue of cattle. Front Physiol 2022;13:958837. [DOI: 10.3389/fphys.2022.958837] [Reference Citation Analysis]
24 Zhang X, Xu D, Chen M, Wang Y, He L, Wang L, Wu J, Yin J. Impacts of Selected Dietary Nutrient Intakes on Skeletal Muscle Insulin Sensitivity and Applications to Early Prevention of Type 2 Diabetes. Adv Nutr 2021;12:1305-16. [PMID: 33418570 DOI: 10.1093/advances/nmaa161] [Reference Citation Analysis]
25 Parveen F, Bender D, Law SH, Mishra VK, Chen CC, Ke LY. Role of Ceramidases in Sphingolipid Metabolism and Human Diseases. Cells 2019;8:E1573. [PMID: 31817238 DOI: 10.3390/cells8121573] [Cited by in Crossref: 23] [Cited by in F6Publishing: 22] [Article Influence: 7.7] [Reference Citation Analysis]
26 Khodadoust MM. Inferring a causal relationship between ceramide levels and COVID-19 respiratory distress. Sci Rep 2021;11:20866. [PMID: 34675292 DOI: 10.1038/s41598-021-00286-7] [Reference Citation Analysis]
27 Wang Q, Zhan S, Han F, Liu Y, Wu H, Huang Z. The Possible Mechanism of Physiological Adaptation to the Low-Se Diet and Its Health Risk in the Traditional Endemic Areas of Keshan Diseases. Biol Trace Elem Res 2021. [PMID: 34365573 DOI: 10.1007/s12011-021-02851-7] [Reference Citation Analysis]
28 Sharma I, Liao Y, Zheng X, Kanwar YS. New Pandemic: Obesity and Associated Nephropathy. Front Med (Lausanne) 2021;8:673556. [PMID: 34268323 DOI: 10.3389/fmed.2021.673556] [Reference Citation Analysis]
29 Lanzon B, Martin-Taboada M, Castro-Alves V, Vila-Bedmar R, González de Pablos I, Duberg D, Gomez P, Rodriguez E, Orešič M, Hyötyläinen T, Morales E, Ruperez FJ, Medina-Gomez G. Lipidomic and Metabolomic Signature of Progression of Chronic Kidney Disease in Patients with Severe Obesity. Metabolites 2021;11:836. [PMID: 34940593 DOI: 10.3390/metabo11120836] [Reference Citation Analysis]
30 Lair B, Laurens C, Van Den Bosch B, Moro C. Novel Insights and Mechanisms of Lipotoxicity-Driven Insulin Resistance. Int J Mol Sci 2020;21:E6358. [PMID: 32887221 DOI: 10.3390/ijms21176358] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
31 Guitton J, Bandet CL, Mariko ML, Tan-Chen S, Bourron O, Benomar Y, Hajduch E, Le Stunff H. Sphingosine-1-Phosphate Metabolism in the Regulation of Obesity/Type 2 Diabetes. Cells 2020;9:E1682. [PMID: 32668665 DOI: 10.3390/cells9071682] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
32 Lynch GM, Murphy CH, Castro EM, Roche HM. Inflammation and metabolism: the role of adiposity in sarcopenic obesity. Proc Nutr Soc 2020;:1-13. [PMID: 32669148 DOI: 10.1017/S0029665120007119] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
33 Mantovani A, Dugo C. Ceramides and risk of major adverse cardiovascular events: A meta-analysis of longitudinal studies. J Clin Lipidol 2020;14:176-85. [PMID: 32067904 DOI: 10.1016/j.jacl.2020.01.005] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
34 Hajduch E, Lachkar F, Ferré P, Foufelle F. Roles of Ceramides in Non-Alcoholic Fatty Liver Disease. J Clin Med 2021;10:792. [PMID: 33669443 DOI: 10.3390/jcm10040792] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
35 Al Saedi A, Goodman CA, Myers DE, Hayes A, Duque G. Osteosarcopenia as a Lipotoxic Disease. In: Duque G, editor. Osteosarcopenia: Bone, Muscle and Fat Interactions. Cham: Springer International Publishing; 2019. pp. 123-43. [DOI: 10.1007/978-3-030-25890-0_6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
36 Kretzschmar T, Bekhite MM, Wu JMF, Haase D, Förster M, Müller T, Nietzsche S, Westermann M, Franz M, Gräler MH, Schulze PC. Long-Chain and Very Long-Chain Ceramides Mediate Doxorubicin-Induced Toxicity and Fibrosis. Int J Mol Sci 2021;22:11852. [PMID: 34769283 DOI: 10.3390/ijms222111852] [Reference Citation Analysis]
37 Alatibi KI, Hagenbuchner J, Wehbe Z, Karall D, Ausserlechner MJ, Vockley J, Spiekerkoetter U, Grünert SC, Tucci S. Different Lipid Signature in Fibroblasts of Long-Chain Fatty Acid Oxidation Disorders. Cells 2021;10:1239. [PMID: 34069977 DOI: 10.3390/cells10051239] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
38 De Carvalho FG, Justice JN, Freitas EC, Kershaw EE, Sparks LM. Adipose Tissue Quality in Aging: How Structural and Functional Aspects of Adipose Tissue Impact Skeletal Muscle Quality. Nutrients 2019;11:E2553. [PMID: 31652734 DOI: 10.3390/nu11112553] [Cited by in Crossref: 21] [Cited by in F6Publishing: 16] [Article Influence: 7.0] [Reference Citation Analysis]
39 Orrego-González E, Londoño-Tobón L, Ardila-González J, Polania-Tovar D, Valencia-Cárdenas A, Velez-Van Meerbeke A. Cannabinoid Effects on Experimental Colorectal Cancer Models Reduce Aberrant Crypt Foci (ACF) and Tumor Volume: A Systematic Review. Evid Based Complement Alternat Med 2020;2020:2371527. [PMID: 32765628 DOI: 10.1155/2020/2371527] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Guo K, Savelieff MG, Rumora AE, Alakwaa FM, Callaghan BC, Hur J, Feldman EL. Plasma Metabolomics and Lipidomics Differentiate Obese Individuals by Peripheral Neuropathy Status. J Clin Endocrinol Metab 2021:dgab844. [PMID: 34878536 DOI: 10.1210/clinem/dgab844] [Reference Citation Analysis]
41 Le Stunff H, Véret J, Kassis N, Denom J, Meneyrol K, Paul JL, Cruciani-Guglielmacci C, Magnan C, Janel N. Deciphering the Link Between Hyperhomocysteinemia and Ceramide Metabolism in Alzheimer-Type Neurodegeneration. Front Neurol 2019;10:807. [PMID: 31417486 DOI: 10.3389/fneur.2019.00807] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
42 Botta A, Elizbaryan K, Tashakorinia P, Lam NH, Sweeney G. An adiponectin-S1P autocrine axis protects skeletal muscle cells from palmitate-induced cell death. Lipids Health Dis 2020;19:156. [PMID: 32611437 DOI: 10.1186/s12944-020-01332-5] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
43 Tan-Chen S, Bourron O, Hajduch É. [Ceramides, crucial actors in the development of insulin resistance and type 2 diabetes]. Med Sci (Paris) 2020;36:497-503. [PMID: 32452372 DOI: 10.1051/medsci/2020091] [Reference Citation Analysis]