BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Deng Y, Zheng H, Yan Z, Liao D, Li C, Zhou J, Liao H. Full-Length Transcriptome Survey and Expression Analysis of Cassia obtusifolia to Discover Putative Genes Related to Aurantio-Obtusin Biosynthesis, Seed Formation and Development, and Stress Response. Int J Mol Sci 2018;19:E2476. [PMID: 30134624 DOI: 10.3390/ijms19092476] [Cited by in Crossref: 15] [Cited by in F6Publishing: 9] [Article Influence: 3.8] [Reference Citation Analysis]
Number Citing Articles
1 Liu M, Yang L, Cai M, Feng C, Zhao Z, Yang D, Ding P. Transcriptome analysis reveals important candidate gene families related to oligosaccharides biosynthesis in Morindaofficinalis. Plant Physiol Biochem 2021;167:1061-71. [PMID: 34601436 DOI: 10.1016/j.plaphy.2021.09.028] [Reference Citation Analysis]
2 Li Y, Wang S, Aioub AA, Qie X, Wu W, Hu Z. Identification and analysis of full-length transcripts involved in the biosynthesis of insecticidal lignan (+)-haedoxan A in Phryma leptostachya. Industrial Crops and Products 2019;142:111868. [DOI: 10.1016/j.indcrop.2019.111868] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
3 He M, Yao Y, Li Y, Yang M, Li Y, Wu B, Yu D. Comprehensive transcriptome analysis reveals genes potentially involved in isoflavone biosynthesis in Pueraria thomsonii Benth. PLoS One 2019;14:e0217593. [PMID: 31163077 DOI: 10.1371/journal.pone.0217593] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
4 Zhou S, Zhang J, Han H, Zhang J, Ma H, Zhang Z, Lu Y, Liu W, Yang X, Li X, Li L. Full-length transcriptome sequences of Agropyron cristatum facilitate the prediction of putative genes for thousand-grain weight in a wheat-A. cristatum translocation line. BMC Genomics 2019;20:1025. [PMID: 31881839 DOI: 10.1186/s12864-019-6416-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
5 Yang X, Patil S, Joshi S, Jamla M, Kumar V. Exploring epitranscriptomics for crop improvement and environmental stress tolerance. Plant Physiology and Biochemistry 2022. [DOI: 10.1016/j.plaphy.2022.04.031] [Reference Citation Analysis]
6 Zhang T, Huang S, Song S, Zou M, Yang T, Wang W, Zhou J, Liao H. Identification of evolutionary relationships and DNA markers in the medicinally important genus Fritillaria based on chloroplast genomics. PeerJ 2021;9:e12612. [PMID: 35003925 DOI: 10.7717/peerj.12612] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Tian S, Wang D, Yang L, Zhang Z, Liu Y. A systematic review of 1-Deoxy-D-xylulose-5-phosphate synthase in terpenoid biosynthesis in plants. Plant Growth Regul 2022;96:221-35. [DOI: 10.1007/s10725-021-00784-8] [Reference Citation Analysis]
8 Ge Y, Cheng Z, Si X, Ma W, Tan L, Zang X, Wu B, Xu Z, Wang N, Zhou Z, Lin X, Dong X, Zhan R. Transcriptome Profiling Provides Insight into the Genes in Carotenoid Biosynthesis during the Mesocarp and Seed Developmental Stages of Avocado (Persea americana). Int J Mol Sci 2019;20:E4117. [PMID: 31450745 DOI: 10.3390/ijms20174117] [Cited by in Crossref: 12] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
9 Mei C, Yang J, Yan P, Li N, Ma K, Mamat A, Han L, Dong Q, Mao K, Ma F, Wang J. Full-length transcriptome and targeted metabolome analyses provide insights into defense mechanisms of Malus sieversii against Agrilus mali. PeerJ 2020;8:e8992. [PMID: 32461824 DOI: 10.7717/peerj.8992] [Reference Citation Analysis]
10 Jiang R, Zou M, Qin Y, Tan G, Huang S, Quan H, Zhou J, Liao H. Modeling of the Potential Geographical Distribution of Three Fritillaria Species Under Climate Change. Front Plant Sci 2021;12:749838. [PMID: 35082804 DOI: 10.3389/fpls.2021.749838] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Li W, Fu Y, Lv W, Zhao S, Feng H, Shao L, Li C, Yang J. Characterization of the early gene expression profile in Populus ussuriensis under cold stress using PacBio SMRT sequencing integrated with RNA-seq reads. Tree Physiol 2021:tpab130. [PMID: 34625806 DOI: 10.1093/treephys/tpab130] [Reference Citation Analysis]
12 Kang SH, Pandey RP, Lee CM, Sim JS, Jeong JT, Choi BS, Jung M, Ginzburg D, Zhao K, Won SY, Oh TJ, Yu Y, Kim NH, Lee OR, Lee TH, Bashyal P, Kim TS, Lee WH, Hawkins C, Kim CK, Kim JS, Ahn BO, Rhee SY, Sohng JK. Genome-enabled discovery of anthraquinone biosynthesis in Senna tora. Nat Commun 2020;11:5875. [PMID: 33208749 DOI: 10.1038/s41467-020-19681-1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
13 Mao R, Bai Z, Wu J, Han R, Zhang X, Chai W, Liang Z. Transcriptome and HPLC Analysis Reveal the Regulatory Mechanisms of Aurantio-Obtusin in Space Environment-Induced Senna obtusifolia Lines. Int J Environ Res Public Health 2022;19:898. [PMID: 35055719 DOI: 10.3390/ijerph19020898] [Reference Citation Analysis]
14 Chang Y, Hu T, Zhang W, Zhou L, Wang Y, Jiang Z. Transcriptome profiling for floral development in reblooming cultivar 'High Noon' of Paeonia suffruticosa. Sci Data 2019;6:217. [PMID: 31641161 DOI: 10.1038/s41597-019-0240-1] [Reference Citation Analysis]
15 Qin Y, Li Q, An Q, Li D, Huang S, Zhao Y, Chen W, Zhou J, Liao H. A phenylalanine ammonia lyase from Fritillaria unibracteata promotes drought tolerance by regulating lignin biosynthesis and SA signaling pathway. Int J Biol Macromol 2022;213:574-88. [PMID: 35643154 DOI: 10.1016/j.ijbiomac.2022.05.161] [Reference Citation Analysis]
16 Kang SH, Lee WH, Lee CM, Sim JS, Won SY, Han SR, Kwon SJ, Kim JS, Kim CK, Oh TJ. De novo transcriptome sequence of Senna tora provides insights into anthraquinone biosynthesis. PLoS One 2020;15:e0225564. [PMID: 32380515 DOI: 10.1371/journal.pone.0225564] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
17 Zhong F, Huang L, Qi L, Ma Y, Yan Z. Full-length transcriptome analysis of Coptis deltoidea and identification of putative genes involved in benzylisoquinoline alkaloids biosynthesis based on combined sequencing platforms. Plant Mol Biol 2020;102:477-99. [PMID: 31902069 DOI: 10.1007/s11103-019-00959-y] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
18 Zhang H, Deng W, Lu C, He M, Yan H. SMRT sequencing of full-length transcriptome and gene expression analysis in two chemical types of Pogostemon cablin (Blanco) Benth. PeerJ 2022;10:e12940. [DOI: 10.7717/peerj.12940] [Reference Citation Analysis]
19 Huang T, Gu W, Liu E, Zhang L, Dong F, He X, Jiao W, Li C, Wang B, Xu G. Screening and Validation of p38 MAPK Involved in Ovarian Development of Brachymystax lenok. Front Vet Sci 2022;9:752521. [DOI: 10.3389/fvets.2022.752521] [Reference Citation Analysis]
20 Qian X, Sun Y, Zhou G, Yuan Y, Li J, Huang H, Xu L, Li L. Single-molecule real-time transcript sequencing identified flowering regulatory genes in Crocus sativus. BMC Genomics 2019;20:857. [PMID: 31726972 DOI: 10.1186/s12864-019-6200-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]