1 |
Lin J, de Rezende VL, de Aguiar da Costa M, de Oliveira J, Gonçalves CL. Cholesterol metabolism pathway in autism spectrum disorder: From animal models to clinical observations. Pharmacol Biochem Behav 2023;223:173522. [PMID: 36717034 DOI: 10.1016/j.pbb.2023.173522] [Reference Citation Analysis]
|
2 |
Jacob M, Alexander J, Jin S, Feig L. Identifying novel convergent roles of neuronal β-catenin and APC in modulating mRNA translation, plasticity and learning.. [DOI: 10.21203/rs.3.rs-2334720/v1] [Reference Citation Analysis]
|
3 |
Tolezano GC, Bastos GC, da Costa SS, Freire BL, Homma TK, Honjo RS, Yamamoto GL, Passos-bueno MR, Koiffmann CP, Kim CA, Vianna-morgante AM, de Lima Jorge AA, Bertola DR, Rosenberg C, Krepischi ACV. Burden of Rare Copy Number Variants in Microcephaly: A Brazilian Cohort of 185 Microcephalic Patients and Review of the Literature. J Autism Dev Disord 2022. [DOI: 10.1007/s10803-022-05853-z] [Reference Citation Analysis]
|
4 |
Anijs M, Devanna P, Vernes SC. ARHGEF39, a Gene Implicated in Developmental Language Disorder, Activates RHOA and Is Involved in Cell De-Adhesion and Neural Progenitor Cell Proliferation. Front Mol Neurosci 2022;15:941494. [DOI: 10.3389/fnmol.2022.941494] [Reference Citation Analysis]
|
5 |
Bailly C, Beignet J, Loirand G, Sauzeau V. Rac1 as a therapeutic anticancer target: Promises and limitations. Biochem Pharmacol 2022;203:115180. [PMID: 35853497 DOI: 10.1016/j.bcp.2022.115180] [Reference Citation Analysis]
|
6 |
Keine C, Al-yaari M, Radulovic T, Thomas CI, Valino Ramos P, Guerrero-given D, Ranjan M, Taschenberger H, Kamasawa N, Young SM. Presynaptic Rac1 controls synaptic strength through the regulation of synaptic vesicle priming.. [DOI: 10.1101/2022.06.29.497712] [Reference Citation Analysis]
|
7 |
Deng Y, Song H, Xiao Y, Zhao Y, Chu L, Ding J, Shen X, Qi X. High-Throughput Sequencing to Investigate lncRNA-circRNA-miRNA-mRNA Networks Underlying the Effects of Beta-Amyloid Peptide and Senescence on Astrocytes. Front Genet 2022;13:868856. [DOI: 10.3389/fgene.2022.868856] [Reference Citation Analysis]
|
8 |
Chong S, Chen G, Dang Z, Niu F, Zhang L, Ma H, Zhao Y. Echinococcus multilocularis drives the polarization of macrophages by regulating the RhoA-MAPK signaling pathway and thus affects liver fibrosis. Bioengineered 2022;13:8747-58. [PMID: 35324411 DOI: 10.1080/21655979.2022.2056690] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
9 |
Bijata M, Bączyńska E, Müller FE, Bijata K, Masternak J, Krzystyniak A, Szewczyk B, Siwiec M, Antoniuk S, Roszkowska M, Figiel I, Magnowska M, Olszyński KH, Wardak AD, Hogendorf A, Ruszczycki B, Gorinski N, Labus J, Stępień T, Tarka S, Bojarski AJ, Tokarski K, Filipkowski RK, Ponimaskin E, Wlodarczyk J. Activation of the 5-HT7 receptor and MMP-9 signaling module in the hippocampal CA1 region is necessary for the development of depressive-like behavior. Cell Rep 2022;38:110532. [PMID: 35294881 DOI: 10.1016/j.celrep.2022.110532] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
|
10 |
Nishikawa M, Ito H, Tabata H, Ueda H, Nagata K. Impaired Function of PLEKHG2, a Rho-Guanine Nucleotide-Exchange Factor, Disrupts Corticogenesis in Neurodevelopmental Phenotypes. Cells 2022;11:696. [DOI: 10.3390/cells11040696] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
11 |
Nussinov R, Tsai CJ, Jang H. How can same-gene mutations promote both cancer and developmental disorders? Sci Adv 2022;8:eabm2059. [PMID: 35030014 DOI: 10.1126/sciadv.abm2059] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
|
12 |
Duman JG, Blanco FA, Cronkite CA, Ru Q, Erikson KC, Mulherkar S, Saifullah AB, Firozi K, Tolias KF. Rac-maninoff and Rho-vel: The symphony of Rho-GTPase signaling at excitatory synapses. Small GTPases 2022;13:14-47. [PMID: 33955328 DOI: 10.1080/21541248.2021.1885264] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
13 |
Scala M, Nishikawa M, Nagata KI, Striano P. Pathophysiological Mechanisms in Neurodevelopmental Disorders Caused by Rac GTPases Dysregulation: What's behind Neuro-RACopathies. Cells 2021;10:3395. [PMID: 34943902 DOI: 10.3390/cells10123395] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
14 |
Schwab JD, Ikonomi N, Werle SD, Weidner FM, Geiger H, Kestler HA. Reconstructing Boolean network ensembles from single-cell data for unraveling dynamics in the aging of human hematopoietic stem cells. Comput Struct Biotechnol J 2021;19:5321-32. [PMID: 34630946 DOI: 10.1016/j.csbj.2021.09.012] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 6.5] [Reference Citation Analysis]
|
15 |
Bevilacqua F, Alberto G, Duarte SP, Serra M, Basterra J, Espeche L, Cerretini RI, Solari AP. TRIO-related intellectual disability with microcephaly: a case report of a patient with novel clinical findings. Clin Dysmorphol 2021;30:22-6. [PMID: 33038108 DOI: 10.1097/MCD.0000000000000349] [Reference Citation Analysis]
|
16 |
Piergiorge RM, de Vasconcelos ATR, Gonçalves Pimentel MM, Santos-Rebouças CB. Strict network analysis of evolutionary conserved and brain-expressed genes reveals new putative candidates implicated in Intellectual Disability and in Global Development Delay. World J Biol Psychiatry 2021;22:435-45. [PMID: 32914658 DOI: 10.1080/15622975.2020.1821916] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
17 |
Guiler W, Koehler A, Boykin C, Lu Q. Pharmacological Modulators of Small GTPases of Rho Family in Neurodegenerative Diseases. Front Cell Neurosci 2021;15:661612. [PMID: 34054432 DOI: 10.3389/fncel.2021.661612] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
|
18 |
Barros II, Leão V, Santis JO, Rosa RCA, Brotto DB, Storti CB, Siena ÁDD, Molfetta GA, Silva WA Jr. Non-Syndromic Intellectual Disability and Its Pathways: A Long Noncoding RNA Perspective. Noncoding RNA 2021;7:22. [PMID: 33799572 DOI: 10.3390/ncrna7010022] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
19 |
Faundes V, Jennings MD, Crilly S, Legraie S, Withers SE, Cuvertino S, Davies SJ, Douglas AGL, Fry AE, Harrison V, Amiel J, Lehalle D, Newman WG, Newkirk P, Ranells J, Splitt M, Cross LA, Saunders CJ, Sullivan BR, Granadillo JL, Gordon CT, Kasher PR, Pavitt GD, Banka S. Impaired eIF5A function causes a Mendelian disorder that is partially rescued in model systems by spermidine. Nat Commun 2021;12:833. [PMID: 33547280 DOI: 10.1038/s41467-021-21053-2] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 8.5] [Reference Citation Analysis]
|
20 |
Carbonell AU, Freire-cobo C, Deyneko IV, Erdjument-bromage H, Clipperton-allen AE, Rasmusson RL, Page DT, Neubert TA, Jordan BA. Comparing synaptic proteomes across seven mouse models for autism reveals molecular subtypes and deficits in Rho GTPase signaling.. [DOI: 10.1101/2021.02.02.429412] [Reference Citation Analysis]
|
21 |
Quach TT, Stratton HJ, Khanna R, Kolattukudy PE, Honnorat J, Meyer K, Duchemin AM. Intellectual disability: dendritic anomalies and emerging genetic perspectives. Acta Neuropathol 2021;141:139-58. [PMID: 33226471 DOI: 10.1007/s00401-020-02244-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
|
22 |
Fell CW, Nagy V. Cellular Models and High-Throughput Screening for Genetic Causality of Intellectual Disability. Trends Mol Med 2021;27:220-30. [PMID: 33397633 DOI: 10.1016/j.molmed.2020.12.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
|
23 |
Contino S, Bertolazzi G, Calì F, Cantone M, Vera-gonzález J, Romano V. Boolean Networks: A Primer. Systems Medicine 2021. [DOI: 10.1016/b978-0-12-801238-3.11518-1] [Reference Citation Analysis]
|
24 |
Song Q, Zhen H, Liu H, Yuan Z, Cao Z, Zhao B. A novel RhoA-related gene, DjRhoA, contributes to the regeneration of brain and intestine in planarian Dugesia japonica. Biochem Biophys Res Commun 2020;533:1359-65. [PMID: 33059921 DOI: 10.1016/j.bbrc.2020.10.020] [Reference Citation Analysis]
|
25 |
Agarwala S, Veerappa AM, Ramachandra NB. Identification of primary copy number variations reveal enrichment of Calcium, and MAPK pathways sensitizing secondary sites for autism. Egypt J Med Hum Genet 2020;21:55. [DOI: 10.1186/s43042-020-00091-3] [Reference Citation Analysis]
|
26 |
Satoh T. Diverse Physiological Functions and Regulatory Mechanisms for Signal-Transducing Small GTPases. Int J Mol Sci 2020;21:E7291. [PMID: 33023216 DOI: 10.3390/ijms21197291] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
|
27 |
Sarowar T, Grabrucker AM. Rho GTPases in the Amygdala-A Switch for Fears? Cells 2020;9:E1972. [PMID: 32858950 DOI: 10.3390/cells9091972] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
28 |
Bogliş A, Cosma AS, Tripon F, Bãnescu C. Exon 21 deletion in the OPHN1 gene in a family with syndromic X-linked intellectual disability: Case report. Medicine (Baltimore) 2020;99:e21632. [PMID: 32872024 DOI: 10.1097/MD.0000000000021632] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
|
29 |
Accogli A, Jarvis GE, Schiavetto A, Lai L, Amirali EL, Cruz DAJ, Rivière J, Trakadis Y. Psychiatric features and variable neurodevelopment outcome in four females with IQSEC2 spectrum disorder. J Genet 2020;99. [DOI: 10.1007/s12041-020-01204-y] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
|
30 |
Schaks M, Reinke M, Witke W, Rottner K. Molecular Dissection of Neurodevelopmental Disorder-Causing Mutations in CYFIP2. Cells 2020;9:E1355. [PMID: 32486060 DOI: 10.3390/cells9061355] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
|
31 |
Asiri A, Aloyouni E, Umair M, Alyafee Y, Al Tuwaijri A, Alhamoudi KM, Almuzzaini B, Al Baz A, Alwadaani D, Nashabat M, Alfadhel M. Mutated RAP1GDS1 causes a new syndrome of dysmorphic feature, intellectual disability & speech delay. Ann Clin Transl Neurol 2020;7:956-64. [PMID: 32431071 DOI: 10.1002/acn3.51059] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
|
32 |
Guo D, Yang X, Shi L. Rho GTPase Regulators and Effectors in Autism Spectrum Disorders: Animal Models and Insights for Therapeutics. Cells 2020;9:E835. [PMID: 32244264 DOI: 10.3390/cells9040835] [Cited by in Crossref: 23] [Cited by in F6Publishing: 24] [Article Influence: 7.7] [Reference Citation Analysis]
|
33 |
Pillet LE, Cresto N, Saillour Y, Ghézali G, Bemelmans AP, Livet J, Bienvenu T, Rouach N, Billuart P. The intellectual disability protein Oligophrenin-1 controls astrocyte morphology and migration. Glia 2020;68:1729-42. [PMID: 32073702 DOI: 10.1002/glia.23801] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
|
34 |
Schaks M, Rottner K. Molecular dissection of neurodevelopmental disorder-causing mutations in CYFIP2.. [DOI: 10.1101/2020.02.11.943332] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
|
35 |
Tejada MI, Ibarluzea N. Non-syndromic X linked intellectual disability: Current knowledge in light of the recent advances in molecular and functional studies. Clin Genet 2020;97:677-87. [PMID: 31898314 DOI: 10.1111/cge.13698] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
|
36 |
Torres-Cuevas I, Corral-Debrinski M, Gressens P. Brain oxidative damage in murine models of neonatal hypoxia/ischemia and reoxygenation. Free Radic Biol Med 2019;142:3-15. [PMID: 31226400 DOI: 10.1016/j.freeradbiomed.2019.06.011] [Cited by in Crossref: 36] [Cited by in F6Publishing: 24] [Article Influence: 9.0] [Reference Citation Analysis]
|
37 |
de Curtis I. The Rac3 GTPase in Neuronal Development, Neurodevelopmental Disorders, and Cancer. Cells 2019;8:E1063. [PMID: 31514269 DOI: 10.3390/cells8091063] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
|
38 |
Lauterborn JC, Cox CD, Chan SW, Vanderklish PW, Lynch G, Gall CM. Synaptic actin stabilization protein loss in Down syndrome and Alzheimer disease. Brain Pathol 2020;30:319-31. [PMID: 31410926 DOI: 10.1111/bpa.12779] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
|
39 |
Miryounesi M, Bahari S, Salehpour S, Alipour N, Ghafouri-Fard S. ELMO Domain Containing 1 (ELMOD1) Gene Mutation Is Associated with Mental Retardation and Autism Spectrum Disorder. J Mol Neurosci 2019;69:312-5. [PMID: 31327155 DOI: 10.1007/s12031-019-01359-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
|
40 |
Qu L, Pan C, He SM, Lang B, Gao GD, Wang XL, Wang Y. The Ras Superfamily of Small GTPases in Non-neoplastic Cerebral Diseases. Front Mol Neurosci 2019;12:121. [PMID: 31213978 DOI: 10.3389/fnmol.2019.00121] [Cited by in Crossref: 40] [Cited by in F6Publishing: 42] [Article Influence: 10.0] [Reference Citation Analysis]
|
41 |
Eid L, Raju PK, Rossignol E. PHACTRing in actin: actin deregulation in genetic epilepsies. Brain 2018;141:3084-8. [PMID: 30364981 DOI: 10.1093/brain/awy272] [Reference Citation Analysis]
|
42 |
Schmitz HP, Jendretzki A, Sterk C, Heinisch JJ. The Small Yeast GTPase Rho5 and Its Dimeric GEF Dck1/Lmo1 Respond to Glucose Starvation. Int J Mol Sci 2018;19:E2186. [PMID: 30049968 DOI: 10.3390/ijms19082186] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
|