BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Wong CM, Xu L, Yau MY. Alternative mRNA Splicing in the Pathogenesis of Obesity. Int J Mol Sci 2018;19:E632. [PMID: 29473878 DOI: 10.3390/ijms19020632] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 3.4] [Reference Citation Analysis]
Number Citing Articles
1 Li N, Li Y, Han X, Zhang J, Han J, Jiang X, Wang W, Xu Y, Xu Y, Fu Y, Si S. LXR agonist inhibits inflammation through regulating MyD88 mRNA alternative splicing. Front Pharmacol 2022;13:973612. [DOI: 10.3389/fphar.2022.973612] [Reference Citation Analysis]
2 Brahma MK, Xiao P, Popa M, Negueruela J, Vandenbempt V, Demine S, Cardozo AK, Gurzov EN. Nova1 or Bim Deficiency in Pancreatic β-Cells Does Not Alter Multiple Low-Dose Streptozotocin-Induced Diabetes and Diet-Induced Obesity in Mice. Nutrients 2022;14:3866. [PMID: 36145242 DOI: 10.3390/nu14183866] [Reference Citation Analysis]
3 Liu Q, Fang L, Wu C. Alternative Splicing and Isoforms: From Mechanisms to Diseases. Genes 2022;13:401. [DOI: 10.3390/genes13030401] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Wang H, Chan TW, Vashisht AA, Drew BG, Calkin AC, Harris TE, Wohlschlegel JA, Xiao X, Reue K. Lipin 1 modulates mRNA splicing during fasting adaptation in liver. JCI Insight 2021;6. [PMID: 34494556 DOI: 10.1172/jci.insight.150114] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
5 Goulielmaki E, Tsekrekou M, Batsiotos N, Ascensão-Ferreira M, Ledaki E, Stratigi K, Chatzinikolaou G, Topalis P, Kosteas T, Altmüller J, Demmers JA, Barbosa-Morais NL, Garinis GA. The splicing factor XAB2 interacts with ERCC1-XPF and XPG for R-loop processing. Nat Commun 2021;12:3153. [PMID: 34039990 DOI: 10.1038/s41467-021-23505-1] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
6 Wu P, Zhang M, Webster NJG. Alternative RNA Splicing in Fatty Liver Disease. Front Endocrinol (Lausanne) 2021;12:613213. [PMID: 33716968 DOI: 10.3389/fendo.2021.613213] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
7 Louis JM, Agarwal A, Aduri R, Talukdar I. Global analysis of RNA-protein interactions in TNF-α induced alternative splicing in metabolic disorders. FEBS Lett 2021;595:476-90. [PMID: 33417721 DOI: 10.1002/1873-3468.14029] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
8 Farrugia R, Xuereb Anastasi A, Bezzina Wettinger S. Regulation of splicing in cardiovascular disease. Epigenetics in Cardiovascular Disease 2021. [DOI: 10.1016/b978-0-12-822258-4.00013-4] [Reference Citation Analysis]
9 Maftei D, Lattanzi R, Vincenzi M, Squillace S, Fullone MR, Miele R. The balance of concentration between Prokineticin 2β and Prokineticin 2 modulates the food intake by STAT3 signaling. BBA Advances 2021;1:100028. [DOI: 10.1016/j.bbadva.2021.100028] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
10 Cote JL, Argetsinger LS, Flores A, Rupp AC, Cline JM, DeSantis LC, Bedard AH, Bagchi DP, Vander PB, Cacciaglia AM, Clutter ES, Chandrashekar G, MacDougald OA, Myers MG Jr, Carter-Su C. Deletion of the Brain-Specific α and δ Isoforms of Adapter Protein SH2B1 Protects Mice From Obesity. Diabetes 2021;70:400-14. [PMID: 33214137 DOI: 10.2337/db20-0687] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
11 Granata I, Nardelli C, D'Argenio V, Tramontano S, Compare D, Guarracino MR, Nardone G, Pilone V, Sacchetti L. Duodenal Metatranscriptomics to Define Human and Microbial Functional Alterations Associated with Severe Obesity: A Pilot Study. Microorganisms 2020;8:E1811. [PMID: 33213098 DOI: 10.3390/microorganisms8111811] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
12 Goulielmaki E, Tsekrekou M, Batsiotos N, Ascensão-ferreira M, Ledaki E, Stratigi K, Chatzinikolaou G, Topalis P, Kosteas T, Altmüller J, Demmers JA, Barbosa-morais NL, Garinis GA. The Splicing Factor XAB2 interacts with ERCC1-XPF and XPG for RNA-loop processing during mammalian development.. [DOI: 10.1101/2020.07.20.211441] [Reference Citation Analysis]
13 Stolzenbach F, Valdivia S, Ojeda-provoste P, Toledo F, Sobrevia L, Kerr B. DNA methylation changes in genes coding for leptin and insulin receptors during metabolic-altered pregnancies. Biochimica et Biophysica Acta (BBA) - Molecular Basis of Disease 2020;1866:165465. [DOI: 10.1016/j.bbadis.2019.05.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
14 Yustis-rubio JC, Gomez-verjan JC. Alternative Splicing and Aging. Clinical Genetics and Genomics of Aging 2020. [DOI: 10.1007/978-3-030-40955-5_7] [Reference Citation Analysis]
15 Dlamini Z, Hull R, Makhafola TJ, Mbele M. Regulation of alternative splicing in obesity-induced hypertension. Diabetes Metab Syndr Obes 2019;12:1597-615. [PMID: 31695458 DOI: 10.2147/DMSO.S188680] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
16 Chen SY, Li C, Jia X, Lai SJ. Sequence and Evolutionary Features for the Alternatively Spliced Exons of Eukaryotic Genes. Int J Mol Sci 2019;20:E3834. [PMID: 31390737 DOI: 10.3390/ijms20153834] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
17 Fan H, Chen S, Gao B, Ding S, Zhao Q, Li C, Asakawa T. Risk analysis of systemic levels of estrogen and adipokines as well as estrogen receptors from PBMCs in childbearing and perimenopausal women with obesity. Diabetes Metab Syndr Obes 2019;12:1287-95. [PMID: 31534355 DOI: 10.2147/DMSO.S206069] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
18 Annalora AJ, Jozic M, Marcus CB, Iversen PL. Alternative splicing of the vitamin D receptor modulates target gene expression and promotes ligand-independent functions. Toxicol Appl Pharmacol 2019;364:55-67. [PMID: 30552932 DOI: 10.1016/j.taap.2018.12.009] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.4] [Reference Citation Analysis]