BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Calap-Quintana P, González-Fernández J, Sebastiá-Ortega N, Llorens JV, Moltó MD. Drosophila melanogaster Models of Metal-Related Human Diseases and Metal Toxicity. Int J Mol Sci 2017;18:E1456. [PMID: 28684721 DOI: 10.3390/ijms18071456] [Cited by in Crossref: 32] [Cited by in F6Publishing: 37] [Article Influence: 6.4] [Reference Citation Analysis]
Number Citing Articles
1 Zabihihesari A, Parand S, Coulthard AB, Molnar A, Hilliker AJ, Rezai P. An in-vivo microfluidic assay reveals cardiac toxicity of heavy metals and the protective effect of metal responsive transcription factor (MTF-1) in Drosophila model. 3 Biotech 2022;12. [DOI: 10.1007/s13205-022-03336-7] [Reference Citation Analysis]
2 Li Y, Wu F, Mu Q, Xu K, Yang S, Wang P, Wu Y, Wu J, Wang W, Li H, Chen L, Wang F, Liu Y. Metal ions in cerebrospinal fluid: Associations with anxiety, depression, and insomnia among cigarette smokers. CNS Neurosci Ther 2022. [PMID: 36168907 DOI: 10.1111/cns.13955] [Reference Citation Analysis]
3 Liu T, Zou L, Ji X, Xiao G. Chicken skin-derived collagen peptides chelated zinc promotes zinc absorption and represses tumor growth and invasion in vivo by suppressing autophagy. Front Nutr 2022;9:960926. [PMID: 35990359 DOI: 10.3389/fnut.2022.960926] [Reference Citation Analysis]
4 Macêdo NS, de Sousa Silveira Z, Cordeiro PPM, Coutinho HDM, Júnior JPS, Júnior LJQ, Siyadatpanah A, Kim B, da Cunha FAB, da Silva MV, Kumar S. Inhibition of Staphylococcus aureus Efflux Pump by O-Eugenol and Its Toxicity in Drosophila melanogaster Animal Model. BioMed Research International 2022;2022:1-8. [DOI: 10.1155/2022/1440996] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Weber JJ, Brummett LM, Coca ME, Tabunoki H, Kanost MR, Ragan EJ, Park Y, Gorman MJ. Phenotypic analyses, protein localization, and bacteriostatic activity of Drosophila melanogaster transferrin-1. Insect Biochem Mol Biol 2022;:103811. [PMID: 35781032 DOI: 10.1016/j.ibmb.2022.103811] [Reference Citation Analysis]
6 Zhang HL, Wang XC, Liu R. Zinc in Regulating Protein Kinases and Phosphatases in Neurodegenerative Diseases. Biomolecules 2022;12:785. [PMID: 35740910 DOI: 10.3390/biom12060785] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Smoot J, Padilla S, Farraj AK. The utility of alternative models in particulate matter air pollution toxicology. Current Research in Toxicology 2022. [DOI: 10.1016/j.crtox.2022.100077] [Reference Citation Analysis]
8 Xiao G. Molecular physiology of zinc in Drosophila melanogaster. Curr Opin Insect Sci 2022;:100899. [PMID: 35276390 DOI: 10.1016/j.cois.2022.100899] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Fasae KD, Abolaji AO. Interactions and toxicity of non-essential heavy metals (Cd, Pb and Hg): lessons from Drosophila melanogaster. Curr Opin Insect Sci 2022;:100900. [PMID: 35272079 DOI: 10.1016/j.cois.2022.100900] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Xiao G, Zhao M, Liu Z, Du F, Zhou B. Zinc antagonizes iron-regulation of tyrosine hydroxylase activity and dopamine production in Drosophila melanogaster. BMC Biol 2021;19:236. [PMID: 34732185 DOI: 10.1186/s12915-021-01168-0] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
11 Jans K, Lüersen K, Rimbach G. Drosophila melanogaster as a Model Organism to Study Lithium and Boron Bioactivity. Int J Mol Sci 2021;22:11710. [PMID: 34769143 DOI: 10.3390/ijms222111710] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
12 Slobodian MR, Petahtegoose JD, Wallis AL, Levesque DC, Merritt TJS. The Effects of Essential and Non-Essential Metal Toxicity in the Drosophila melanogaster Insect Model: A Review. Toxics 2021;9:269. [PMID: 34678965 DOI: 10.3390/toxics9100269] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
13 Wei T, Ji X, Yu Q, Li G, Wu L, Gao Y, Xiao G. Fear-of-intimacy-mediated zinc transport controls fat body cell dissociation through modulating Mmp activity in Drosophila. Cell Death Dis 2021;12:874. [PMID: 34564691 DOI: 10.1038/s41419-021-04147-z] [Cited by in F6Publishing: 4] [Reference Citation Analysis]
14 Everman ER, Cloud-Richardson KM, Macdonald SJ. Characterizing the genetic basis of copper toxicity in Drosophila reveals a complex pattern of allelic, regulatory, and behavioral variation. Genetics 2021;217:1-20. [PMID: 33683361 DOI: 10.1093/genetics/iyaa020] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
15 Maya-Maldonado K, Cardoso-Jaime V, González-Olvera G, Osorio B, Recio-Tótoro B, Manrique-Saide P, Rodríguez-Sánchez IP, Lanz-Mendoza H, Missirlis F, Hernández-Hernández FC. Mosquito metallomics reveal copper and iron as critical factors for Plasmodium infection. PLoS Negl Trop Dis 2021;15:e0009509. [PMID: 34161336 DOI: 10.1371/journal.pntd.0009509] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
16 Yu X, Tian X, Wang Y, Zhu C. Metal-metal interaction and metal toxicity: a comparison between mammalian and D. melanogaster. Xenobiotica 2021;51:842-51. [PMID: 33929283 DOI: 10.1080/00498254.2021.1922781] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
17 Missirlis F. Regulation and biological function of metal ions in Drosophila. Curr Opin Insect Sci 2021;47:18-24. [PMID: 33581350 DOI: 10.1016/j.cois.2021.02.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
18 Andreani G, Ferlizza E, Cabbri R, Fabbri M, Bellei E, Isani G. Essential (Mg, Fe, Zn and Cu) and Non-Essential (Cd and Pb) Elements in Predatory Insects (Vespa crabro and Vespa velutina): A Molecular Perspective. Int J Mol Sci 2020;22:E228. [PMID: 33379365 DOI: 10.3390/ijms22010228] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
19 Zhang B, Binks T, Burke R. The E3 ubiquitin ligase Slimb/β-TrCP is required for normal copper homeostasis in Drosophila. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research 2020;1867:118768. [DOI: 10.1016/j.bbamcr.2020.118768] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
20 Curcio R, Lunetti P, Zara V, Ferramosca A, Marra F, Fiermonte G, Cappello AR, De Leonardis F, Capobianco L, Dolce V. Drosophila melanogaster Mitochondrial Carriers: Similarities and Differences with the Human Carriers. Int J Mol Sci 2020;21:E6052. [PMID: 32842667 DOI: 10.3390/ijms21176052] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
21 Xue J, Wang HL, Xiao G. Transferrin1 modulates rotenone-induced Parkinson's disease through affecting iron homeostasis in Drosophila melanogaster. Biochem Biophys Res Commun 2020;531:305-11. [PMID: 32800558 DOI: 10.1016/j.bbrc.2020.07.025] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
22 Weber JJ, Kanost MR, Gorman MJ. Iron binding and release properties of transferrin-1 from Drosophila melanogaster and Manduca sexta: Implications for insect iron homeostasis. Insect Biochem Mol Biol 2020;125:103438. [PMID: 32735914 DOI: 10.1016/j.ibmb.2020.103438] [Cited by in Crossref: 4] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
23 Xiao G, Liu ZH, Zhao M, Wang HL, Zhou B. Transferrin 1 Functions in Iron Trafficking and Genetically Interacts with Ferritin in Drosophila melanogaster. Cell Rep 2019;26:748-758.e5. [PMID: 30650364 DOI: 10.1016/j.celrep.2018.12.053] [Cited by in Crossref: 28] [Cited by in F6Publishing: 32] [Article Influence: 14.0] [Reference Citation Analysis]
24 Jiang G, Song J, Hu H, Tong X, Dai F. Evaluation of the silkworm lemon mutant as an invertebrate animal model for human sepiapterin reductase deficiency. R Soc Open Sci 2020;7:191888. [PMID: 32269807 DOI: 10.1098/rsos.191888] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
25 Zamberlan D, Halmenschelager P, Silva L, da Rocha J. Copper decreases associative learning and memory in Drosophila melanogaster. Science of The Total Environment 2020;710:135306. [DOI: 10.1016/j.scitotenv.2019.135306] [Cited by in Crossref: 13] [Cited by in F6Publishing: 20] [Article Influence: 6.5] [Reference Citation Analysis]
26 Vásquez-procopio J, Osorio B, Cortés-martínez L, Hernández-hernández F, Medina-contreras O, Ríos-castro E, Comjean A, Li F, Hu Y, Mohr S, Perrimon N, Missirlis F. Intestinal response to dietary manganese depletion in Drosophila. Metallomics 2020;12:218-40. [DOI: 10.1039/c9mt00218a] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
27 Xu Y, Xiao G, Liu L, Lang M. Zinc transporters in Alzheimer's disease. Mol Brain 2019;12:106. [PMID: 31818314 DOI: 10.1186/s13041-019-0528-2] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 4.7] [Reference Citation Analysis]
28 Mojica-Vázquez LH, Madrigal-Zarraga D, García-Martínez R, Boube M, Calderón-Segura ME, Oyallon J. Mercury chloride exposure induces DNA damage, reduces fertility, and alters somatic and germline cells in Drosophila melanogaster ovaries. Environ Sci Pollut Res Int 2019;26:32322-32. [PMID: 31598926 DOI: 10.1007/s11356-019-06449-4] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Algarve TD, Assmann CE, Aigaki T, da Cruz IBM. Parental and preimaginal exposure to methylmercury disrupts locomotor activity and circadian rhythm of adult Drosophila melanogaster. Drug Chem Toxicol 2020;43:255-65. [PMID: 30033776 DOI: 10.1080/01480545.2018.1485689] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
30 Monnier V, Llorens JV, Navarro JA. Impact of Drosophila Models in the Study and Treatment of Friedreich's Ataxia. Int J Mol Sci 2018;19:E1989. [PMID: 29986523 DOI: 10.3390/ijms19071989] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.8] [Reference Citation Analysis]
31 Mohr SE, Killilea DW. Editorial: Metal Biology Takes Flight: The Study of Metal Homeostasis and Detoxification in Insects. Front Genet 2018;9:221. [PMID: 29971094 DOI: 10.3389/fgene.2018.00221] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
32 Wang X, Yin S, Yang Z, Zhou B. Drosophila multicopper oxidase 3 is a potential ferroxidase involved in iron homeostasis. Biochim Biophys Acta Gen Subj 2018;1862:1826-34. [PMID: 29684424 DOI: 10.1016/j.bbagen.2018.04.017] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
33 Tejeda-Guzmán C, Rosas-Arellano A, Kroll T, Webb SM, Barajas-Aceves M, Osorio B, Missirlis F. Biogenesis of zinc storage granules in Drosophila melanogaster. J Exp Biol 2018;221:jeb168419. [PMID: 29367274 DOI: 10.1242/jeb.168419] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
34 Marelja Z, Leimkühler S, Missirlis F. Iron Sulfur and Molybdenum Cofactor Enzymes Regulate the Drosophila Life Cycle by Controlling Cell Metabolism. Front Physiol 2018;9:50. [PMID: 29491838 DOI: 10.3389/fphys.2018.00050] [Cited by in Crossref: 20] [Cited by in F6Publishing: 25] [Article Influence: 5.0] [Reference Citation Analysis]
35 Walter-Nuno AB, Taracena ML, Mesquita RD, Oliveira PL, Paiva-Silva GO. Silencing of Iron and Heme-Related Genes Revealed a Paramount Role of Iron in the Physiology of the Hematophagous Vector Rhodnius prolixus. Front Genet 2018;9:19. [PMID: 29456553 DOI: 10.3389/fgene.2018.00019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]
36 Xiao G, Zhou B. ZIP13: A Study of Drosophila Offers an Alternative Explanation for the Corresponding Human Disease. Front Genet 2017;8:234. [PMID: 29445391 DOI: 10.3389/fgene.2017.00234] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 2.5] [Reference Citation Analysis]
37 Navarro JA, Schneuwly S. Copper and Zinc Homeostasis: Lessons from Drosophila melanogaster. Front Genet 2017;8:223. [PMID: 29312444 DOI: 10.3389/fgene.2017.00223] [Cited by in Crossref: 34] [Cited by in F6Publishing: 36] [Article Influence: 6.8] [Reference Citation Analysis]
38 Merritt TJS, Bewick AJ. Genetic Diversity in Insect Metal Tolerance. Front Genet 2017;8:172. [PMID: 29163639 DOI: 10.3389/fgene.2017.00172] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 3.2] [Reference Citation Analysis]