BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Daliri EB, Oh DH, Lee BH. Bioactive Peptides. Foods 2017;6:E32. [PMID: 28445415 DOI: 10.3390/foods6050032] [Cited by in Crossref: 207] [Cited by in F6Publishing: 222] [Article Influence: 34.5] [Reference Citation Analysis]
Number Citing Articles
1 Sangkaew O, Prombutara P, Roytrakul S, Yompakdee C. Metatranscriptomics Reveals Sequential Expression of Genes Involved in the Production of Melanogenesis Inhibitors by the Defined Microbial Species in Fermented Unpolished Black Rice. Microbiol Spectr 2023;:e0313922. [PMID: 36861996 DOI: 10.1128/spectrum.03139-22] [Reference Citation Analysis]
2 Hu K, Huang H, Li H, Wei Y, Yao C. Legume-Derived Bioactive Peptides in Type 2 Diabetes: Opportunities and Challenges. Nutrients 2023;15. [PMID: 36904097 DOI: 10.3390/nu15051096] [Reference Citation Analysis]
3 Rousta N, Aslan M, Yesilcimen Akbas M, Ozcan F, Sar T, Taherzadeh MJ. Effects of fungal based bioactive compounds on human health: Review paper. Crit Rev Food Sci Nutr 2023;:1-24. [PMID: 36794421 DOI: 10.1080/10408398.2023.2178379] [Reference Citation Analysis]
4 Faustino M, Machado D, Rodrigues D, Andrade JC, Freitas AC, Gomes AM. Design and Characterization of a Cheese Spread Incorporating Osmundea pinnatifida Extract. Foods 2023;12. [PMID: 36766140 DOI: 10.3390/foods12030611] [Reference Citation Analysis]
5 Guo Q, Chen P, Chen X. Bioactive peptides derived from fermented foods: Preparation and biological activities. Journal of Functional Foods 2023;101:105422. [DOI: 10.1016/j.jff.2023.105422] [Reference Citation Analysis]
6 Li QZ, Zhou ZR, Hu CY, Li XB, Chang YZ, Liu Y, Wang YL, Zhou XW. Recent advances of bioactive proteins/polypeptides in the treatment of breast cancer. Food Sci Biotechnol 2023;32:265-82. [PMID: 36619215 DOI: 10.1007/s10068-022-01233-6] [Reference Citation Analysis]
7 Lemes AC, de Oliveira Filho JG, Fernandes SS, Gautério GV, Egea MB. Bioactive Peptides from Protein-Rich Waste. Sustainable Development and Biodiversity 2023. [DOI: 10.1007/978-981-19-8774-8_6] [Reference Citation Analysis]
8 Alblooshi M, Devarajan AR, Singh BP, Ramakrishnan P, Mostafa H, Kamal H, Mudgil P, Maqsood S. Multifunctional bioactive properties of hydrolysates from colocynth (Citrullus colocynthis) seeds derived proteins: Characterization and biological properties. Plant Physiol Biochem 2023;194:326-34. [PMID: 36459867 DOI: 10.1016/j.plaphy.2022.11.026] [Reference Citation Analysis]
9 Barati M, Jabbari M, Davoodi SH. Methods for identification of bioactive peptides. Enzymes Beyond Traditional Applications in Dairy Science and Technology 2023. [DOI: 10.1016/b978-0-323-96010-6.00005-9] [Reference Citation Analysis]
10 Rauf MA. Stability and release of bioactives from liposomes. Liposomal Encapsulation in Food Science and Technology 2023. [DOI: 10.1016/b978-0-12-823935-3.00005-9] [Reference Citation Analysis]
11 Mardani M, Badakné K, Farmani J, Aluko RE. Antioxidant peptides: Overview of production, properties, and applications in food systems. Compr Rev Food Sci Food Saf 2023;22:46-106. [PMID: 36370116 DOI: 10.1111/1541-4337.13061] [Reference Citation Analysis]
12 Teniente-martínez G, Bernardino-nicanor A, Valadez-vega MDC, Montañez-soto JL, Juárez-goiz JMS, González-cruz L. In vitro study of the antihypertensive, antioxidant and antiproliferative activities of peptides obtained from two varieties of Phaseolus coccineus L. CyTA - Journal of Food 2022;20:102-10. [DOI: 10.1080/19476337.2022.2090611] [Reference Citation Analysis]
13 Matkawala F, Nighojkar S, Nighojkar A. Next-generation nutraceuticals: bioactive peptides from plant proteases. BioTechnologia (Pozn) 2022;103:397-408. [PMID: 36685698 DOI: 10.5114/bta.2022.120708] [Reference Citation Analysis]
14 Berenguer CV, Andrade C, Pereira JAM, Perestrelo R, Câmara JS. Current Challenges in the Sustainable Valorisation of Agri-Food Wastes: A Review. Processes 2022;11:20. [DOI: 10.3390/pr11010020] [Reference Citation Analysis]
15 Hayes M, Mora L, Lucakova S. Identification of Bioactive Peptides from Nannochloropsis oculata Using a Combination of Enzymatic Treatment, in Silico Analysis and Chemical Synthesis. Biomolecules 2022;12. [PMID: 36551234 DOI: 10.3390/biom12121806] [Reference Citation Analysis]
16 Marasinghe CK, Jung WK, Je JY. Anti-inflammatory action of ark shell (Scapharca subcrenata) protein hydrolysate in LPS-stimulated RAW264.7 murine macrophages. J Food Biochem 2022;46:e14493. [PMID: 36309949 DOI: 10.1111/jfbc.14493] [Reference Citation Analysis]
17 Ye H, Tao X, Zhang W, Chen Y, Yu Q, Xie J. Food-derived bioactive peptides: production, biological activities, opportunities and challenges. Journal of Future Foods 2022;2:294-306. [DOI: 10.1016/j.jfutfo.2022.08.002] [Reference Citation Analysis]
18 Shukla P, Sakure A, Pipaliya R, Basaiawmoit B, Maurya R, Bishnoi M, Kondepudi KK, Hati S. Exploring the potential of Lacticaseibacillus paracasei M11 on antidiabetic, anti-inflammatory, and ACE inhibitory effects of fermented dromedary camel milk (Camelus dromedaries) and the release of antidiabetic and anti-hypertensive peptides. J Food Biochem 2022;46:e14449. [PMID: 36206543 DOI: 10.1111/jfbc.14449] [Reference Citation Analysis]
19 Dary Guerra-fajardo L, Pavón-pérez J, Vallejos-almirall A, Jorquera-pereira D. Advances in analytical techniques coupled to in vitro bioassays in the search for new peptides with functional activity in effect-directed analysis. Food Chemistry 2022;397:133784. [DOI: 10.1016/j.foodchem.2022.133784] [Reference Citation Analysis]
20 Irankunda R, Camaño Echavarría JA, Paris C, Stefan L, Desobry S, Selmeczi K, Muhr L, Canabady-rochelle L. Metal-Chelating Peptides Separation Using Immobilized Metal Ion Affinity Chromatography: Experimental Methodology and Simulation. Separations 2022;9:370. [DOI: 10.3390/separations9110370] [Reference Citation Analysis]
21 Wang J, Xie Y, Luan Y, Guo T, Xiao S, Zeng X, Zhang S. Identification and dipeptidyl peptidase IV (DPP-IV) inhibitory activity verification of peptides from mouse lymphocytes. Food Science and Human Wellness 2022;11:1515-26. [DOI: 10.1016/j.fshw.2022.06.009] [Reference Citation Analysis]
22 Song Z, Cheng L, Liu Y, Zhan S, Wu Z, Zhang X. Plant-derived bioactive components regulate gut microbiota to prevent depression and depressive-related neurodegenerative diseases: Focus on neurotransmitters. Trends in Food Science & Technology 2022. [DOI: 10.1016/j.tifs.2022.10.019] [Reference Citation Analysis]
23 Trinidad-calderón PA, López-castillo LM, Díaz-gómez JL, Soto RBM, Castorena-torres F, García-lara S. Acetone-precipitated zein protein hydrolysates from blue-maize selectively target hepatocellular carcinoma and fibroblasts in a dose-dependent manner. Food Hydrocolloids for Health 2022. [DOI: 10.1016/j.fhfh.2022.100106] [Reference Citation Analysis]
24 Amaral YMS, De Castro RJS. Unraveling the biological potential of chicken viscera proteins: a study based on their enzymatic hydrolysis to obtain antioxidant peptides.. [DOI: 10.21203/rs.3.rs-2139618/v1] [Reference Citation Analysis]
25 Romero Garay MGG, Becerra-verdin EMG, Soto-domínguez A, Montalvo-gonzález E, García-magaña MDL. Health effects of peptides obtained from hydrolysed chicken by-products by the action of Bromelia pinguin and B. karatas proteases in Wistar rats induced with metabolic syndrome. IFRJ 2022;29:1078-1088. [DOI: 10.47836/ifrj.29.5.10] [Reference Citation Analysis]
26 Abril AG, Pazos M, Villa TG, Calo-mata P, Barros-velázquez J, Carrera M. Proteomics Characterization of Food-Derived Bioactive Peptides with Anti-Allergic and Anti-Inflammatory Properties. Nutrients 2022;14:4400. [DOI: 10.3390/nu14204400] [Reference Citation Analysis]
27 Wójciak KM, Kęska P, Prendecka-Wróbel M, Ferysiuk K. Peptides as Potentially Anticarcinogenic Agent from Functional Canned Meat Product with Willow Extract. Molecules 2022;27:6936. [PMID: 36296529 DOI: 10.3390/molecules27206936] [Reference Citation Analysis]
28 Voroshilin R, Kurbanova M, Yustratov V, Larichev T. Identifying Bioactive Peptides from Poultry By-Products. Food Processing: Techniques and Technology 2022. [DOI: 10.21603/2074-9414-2022-3-2387] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
29 Lammi C, Boschin G, Bartolomei M, Arnoldi A, Galaverna G, Dellafiora L. Mechanistic Insights into Angiotensin I-Converting Enzyme Inhibitory Tripeptides to Decipher the Chemical Basis of Their Activity. J Agric Food Chem 2022. [PMID: 36074807 DOI: 10.1021/acs.jafc.2c04755] [Reference Citation Analysis]
30 Sharma R, Diwan B, Singh BP, Kulshrestha S. Probiotic fermentation of polyphenols: potential sources of novel functional foods. Food Prod Process and Nutr 2022;4:21. [DOI: 10.1186/s43014-022-00101-4] [Reference Citation Analysis]
31 Giannoglou M, Andreou V, Thanou I, Markou G, Katsaros G. High pressure assisted extraction of proteins from wet biomass of Arthrospira platensis (spirulina) – A kinetic approach. Innovative Food Science & Emerging Technologies 2022. [DOI: 10.1016/j.ifset.2022.103138] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
32 Santos-sánchez G, Ponce-españa E, López JC, Álvarez-sánchez N, Álvarez-lópez AI, Pedroche J, Millán F, Millán-linares MC, Lardone PJ, Bejarano I, Cruz-chamorro I, Carrillo-vico A. A Lupin (Lupinusangustifolius) Protein Hydrolysate Exerts Anxiolytic-Like Effects in Western Diet-Fed ApoE−/− Mice. IJMS 2022;23:9828. [DOI: 10.3390/ijms23179828] [Reference Citation Analysis]
33 Nath A, Ahmad AS, Amankwaa A, Csehi B, Mednyánszky Z, Szerdahelyi E, Tóth A, Tormási J, Truong DH, Abrankó L, Koris A. Hydrolysis of Soybean Milk Protein by Papain: Antioxidant, Anti-Angiotensin, Antigenic and Digestibility Perspectives. Bioengineering 2022;9:418. [DOI: 10.3390/bioengineering9090418] [Reference Citation Analysis]
34 Millan GCL, Veras FF, Stincone P, Pailliè-jiménez ME, Brandelli A. Biological activities of whey protein hydrolysate produced by protease from the Antarctic bacterium Lysobacter sp. A03. Biocatalysis and Agricultural Biotechnology 2022;43:102415. [DOI: 10.1016/j.bcab.2022.102415] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
35 Samtiya M, Samtiya S, Badgujar PC, Puniya AK, Dhewa T, Aluko RE. Health-Promoting and Therapeutic Attributes of Milk-Derived Bioactive Peptides. Nutrients 2022;14:3001. [DOI: 10.3390/nu14153001] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
36 Juárez-Chairez MF, Cid-Gallegos MS, Meza-Márquez OG, Jiménez-Martínez C. Biological functions of peptides from legumes in gastrointestinal health. A review legume peptides with gastrointestinal protection. J Food Biochem 2022;:e14308. [PMID: 35770807 DOI: 10.1111/jfbc.14308] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
37 Santos-Sánchez G, Cruz-Chamorro I, Álvarez-Ríos AI, Álvarez-Sánchez N, Rodríguez-Ortiz B, Álvarez-López AI, Fernández-Pachón MS, Pedroche J, Millán F, Millán-Linares MDC, Lardone PJ, Bejarano I, Carrillo-Vico A. Bioactive Peptides from Lupin (Lupinus angustifolius) Prevent the Early Stages of Atherosclerosis in Western Diet-Fed ApoE-/- Mice. J Agric Food Chem 2022. [PMID: 35767743 DOI: 10.1021/acs.jafc.2c00809] [Reference Citation Analysis]
38 Fadimu GJ, Le TT, Gill H, Farahnaky A, Olatunde OO, Truong T. Enhancing the Biological Activities of Food Protein-Derived Peptides Using Non-Thermal Technologies: A Review. Foods 2022;11:1823. [DOI: 10.3390/foods11131823] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
39 Lath A, Santal AR, Kaur N, Kumari P, Singh NP. Anti-cancer peptides: their current trends in the development of peptide-based therapy and anti-tumor drugs. Biotechnol Genet Eng Rev 2022;:1-40. [PMID: 35699384 DOI: 10.1080/02648725.2022.2082157] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
40 Chen X, Huang J, He B. AntiDMPpred: a web service for identifying anti-diabetic peptides. PeerJ 2022;10:e13581. [PMID: 35722269 DOI: 10.7717/peerj.13581] [Reference Citation Analysis]
41 Aydemir LY, Diblan S, Aktas H, Cakitli G. Changes in bioactive properties of dry bean extracts during enzymatic hydrolysis and in vitro digestion steps. Food Measure. [DOI: 10.1007/s11694-022-01484-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Lim JY, Chai T, Lam MQ, Ng WJ, Ee KY. In silico enzymatic hydrolysis of soy sauce cake glycinin G4 to reveal the bioactive peptides as potential food ingredients. Food Measure. [DOI: 10.1007/s11694-022-01433-y] [Reference Citation Analysis]
43 Nong NTP, Hsu J. Bioactive Peptides: An Understanding from Current Screening Methodology. Processes 2022;10:1114. [DOI: 10.3390/pr10061114] [Reference Citation Analysis]
44 Okoye CO, Ezeorba TP, Okeke ES, Okagu IU. Recent Findings on the Isolation, Identification and Quantification of Bioactive Peptides. Applied Food Research 2022;2:100065. [DOI: 10.1016/j.afres.2022.100065] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
45 Ashaolu TJ, Khoder RM, Alkaltham MS, Nawaz A, Walayat N, Umair M, Khalifa I. Mechanism and technological evaluation of biopeptidal-based emulsions. Food Bioscience 2022;47:101705. [DOI: 10.1016/j.fbio.2022.101705] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
46 Murtaza MA, Irfan S, Hafiz I, Ranjha MMAN, Rahaman A, Murtaza MS, Ibrahim SA, Siddiqui SA. Conventional and Novel Technologies in the Production of Dairy Bioactive Peptides. Front Nutr 2022;9:780151. [DOI: 10.3389/fnut.2022.780151] [Reference Citation Analysis]
47 Sasi M, Kumar S, Hasan M, S R A, Garcia-Gutierrez E, Kumari S, Prakash O, Nain L, Sachdev A, Dahuja A. Current trends in the development of soy-based foods containing probiotics and paving the path for soy-synbiotics. Crit Rev Food Sci Nutr 2022;:1-19. [PMID: 35611888 DOI: 10.1080/10408398.2022.2078272] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
48 Basiricò L, Morera P, Evangelista C, Galaverna G, Sforza S, Prandi B, Bernabucci U, Nardone A. Effect of Parmigiano Reggiano Consumption on Blood Pressure of Spontaneous Hypertensive Rats. Dairy 2022;3:364-76. [DOI: 10.3390/dairy3020028] [Reference Citation Analysis]
49 Hosseini F, Reza Sanjabi M, Kazemi M, Ghaemian N. Bioactive Ingredients in Functional Foods: Current Status and Future Trends. Functional Food [Working Title] 2022. [DOI: 10.5772/intechopen.104416] [Reference Citation Analysis]
50 Mahankali S, Kalava J, Garapati Y, Domathoti B, Maddumala VR, Sundramurty VP. A Treatment to Cure Diabetes Using Plant-Based Drug Discovery. Evid Based Complement Alternat Med 2022;2022:8621665. [PMID: 35586686 DOI: 10.1155/2022/8621665] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
51 Pei J, Liu Z, Pan D, Zhao Y, Dang Y, Gao X. Transport, Stability, and In Vivo Hypoglycemic Effect of a Broccoli-Derived DPP-IV Inhibitory Peptide VPLVM. J Agric Food Chem 2022;70:4934-41. [PMID: 35436096 DOI: 10.1021/acs.jafc.1c08191] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
52 Garmidolova A, Desseva I, Mihaylova D, Lante A. Bioactive Peptides from Lupinus spp. Seed Proteins-State-of-the-Art and Perspectives. Applied Sciences 2022;12:3766. [DOI: 10.3390/app12083766] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
53 Meriño-cabrera Y, Castro JS, de Almeida Barros R, da Silva Junior NR, de Oliveira Ramos H, de Almeida Oliveira MG. Arginine-containing dipeptides decrease affinity of gut trypsins and compromise soybean pest development. Pesticide Biochemistry and Physiology 2022. [DOI: 10.1016/j.pestbp.2022.105107] [Reference Citation Analysis]
54 Olivera-montenegro L, Bugarin A, Marzano A, Best I, Zabot GL, Romero H. Production of Protein Hydrolysate from Quinoa (Chenopodium quinoa Willd.): Economic and Experimental Evaluation of Two Pretreatments Using Supercritical Fluids’ Extraction and Conventional Solvent Extraction. Foods 2022;11:1015. [DOI: 10.3390/foods11071015] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
55 López-García G, Dublan-García O, Arizmendi-Cotero D, Gómez Oliván LM. Antioxidant and Antimicrobial Peptides Derived from Food Proteins. Molecules 2022;27:1343. [PMID: 35209132 DOI: 10.3390/molecules27041343] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
56 Aloo SO, Oh D. The Functional Interplay between Gut Microbiota, Protein Hydrolysates/Bioactive Peptides, and Obesity: A Critical Review on the Study Advances. Antioxidants 2022;11:333. [DOI: 10.3390/antiox11020333] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
57 Garmidolova A, Desseva I, Terziyska M, Pavlov A, Mollov P, Ivanov G, Dragoev S. Food-derived bioactive peptides-methods for purification and analysis. BIO Web Conf 2022;45:02001. [DOI: 10.1051/bioconf/20224502001] [Reference Citation Analysis]
58 Akbarian M, Khani A, Eghbalpour S, Uversky VN. Bioactive Peptides: Synthesis, Sources, Applications, and Proposed Mechanisms of Action. Int J Mol Sci 2022;23:1445. [PMID: 35163367 DOI: 10.3390/ijms23031445] [Cited by in Crossref: 36] [Cited by in F6Publishing: 36] [Article Influence: 36.0] [Reference Citation Analysis]
59 Mcclements DJ, Grossmann L. Nutritional and Health Aspects. Next-Generation Plant-based Foods 2022. [DOI: 10.1007/978-3-030-96764-2_5] [Reference Citation Analysis]
60 Sharma P, Sosalagere C, Kehinde BA, Choudhary B. Bioactive peptides production using microbial resources. Microbial Resource Technologies for Sustainable Development 2022. [DOI: 10.1016/b978-0-323-90590-9.00015-8] [Reference Citation Analysis]
61 Koreti D, Kosre A, Kumar A, Jadhav SK, Chandrawanshi NK. Potential Application of Edible Mushrooms in Nutrition-Medical Sector and Baking Industries. Applied Mycology 2022. [DOI: 10.1007/978-3-030-90649-8_10] [Reference Citation Analysis]
62 Güneş FE. Pro-/Anti-Inflammatory Bioactive Proteins and Peptides. Research Anthology on Recent Advancements in Ethnopharmacology and Nutraceuticals 2022. [DOI: 10.4018/978-1-6684-3546-5.ch030] [Reference Citation Analysis]
63 Das S, Hati S. Food derived ACE inhibitory peptides. Nutrition and Functional Foods in Boosting Digestion, Metabolism and Immune Health 2022. [DOI: 10.1016/b978-0-12-821232-5.00006-9] [Reference Citation Analysis]
64 Comert Onder F, Ay M. Recent developments in natural bioactive peptides: Anticancer potential and structure–activity relationships. Bioactive Natural Products 2022. [DOI: 10.1016/b978-0-323-91250-1.00009-4] [Reference Citation Analysis]
65 Zulfigar SB, Ahmad AN. Zero-Waste Concept in the Seafood Industry: Enzymatic Hydrolysis Perspective. Waste Management, Processing and Valorisation 2022. [DOI: 10.1007/978-981-16-7653-6_11] [Reference Citation Analysis]
66 Racovita S, Popa M, Atanase LI, Vasiliu S. Synthetic macromolecules with biological activity. Biological Macromolecules 2022. [DOI: 10.1016/b978-0-323-85759-8.00014-2] [Reference Citation Analysis]
67 Sehgal S, Saji H, Banik SP. Role of food structure in digestion and health. Nutrition and Functional Foods in Boosting Digestion, Metabolism and Immune Health 2022. [DOI: 10.1016/b978-0-12-821232-5.00019-7] [Reference Citation Analysis]
68 Vilgis TA. Physikalische Chemie der Ernährung und der Ernährungsformen. Biophysik der Ernährung 2022. [DOI: 10.1007/978-3-662-65108-7_5] [Reference Citation Analysis]
69 Ho L, Tan T, Chong L. Designer foods as an effective approach to enhance disease preventative properties of food through its health functionalities. Future Foods 2022. [DOI: 10.1016/b978-0-323-91001-9.00031-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
70 Dobreva L, Danova S, Georgieva V, Georgieva S, Koprinarova M. Anti-Salmonella activity of lactobacilli from different habitats. BJVM 2022;25:564-577. [DOI: 10.15547/bjvm.2395] [Reference Citation Analysis]
71 Hernández-ledesma B, Fernández-tomé S, Amigo L. Bioactive peptides against inflammatory intestinal disorders and obesity. Bioactive Food Components Activity in Mechanistic Approach 2022. [DOI: 10.1016/b978-0-12-823569-0.00010-2] [Reference Citation Analysis]
72 Kamiloglu S, Capanoglu E, Jafari SM. An Overview of Food Bioactive Compounds and Their Health-Promoting Features. Food Bioactive Ingredients 2022. [DOI: 10.1007/978-3-030-96885-4_1] [Reference Citation Analysis]
73 Amorim APD, Silva GHD, Brandão RMP, Porto ALF, Bezerra RP. Algae as a source of peptides inhibitors of the angiotensin-converting enzyme: a systematic review. An Acad Bras Ciênc 2022;94:e20201636. [DOI: 10.1590/0001-3765202220201636] [Reference Citation Analysis]
74 Sodhi M, Mukesh M, Sharma V, Kataria RS, Sobti RC. Harnessing potential of A2 milk in India: an overview. Advances in Animal Experimentation and Modeling 2022. [DOI: 10.1016/b978-0-323-90583-1.00016-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
75 Cruz-Casas DE, Aguilar CN, Ascacio-Valdés JA, Rodríguez-Herrera R, Chávez-González ML, Flores-Gallegos AC. Enzymatic hydrolysis and microbial fermentation: The most favorable biotechnological methods for the release of bioactive peptides. Food Chem (Oxf) 2021;3:100047. [PMID: 35415659 DOI: 10.1016/j.fochms.2021.100047] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
76 Rodrigues LA, Leonardo IC, Gaspar FB, Roseiro LC, Duarte ARC, Matias AA, Paiva A. Unveiling the potential of betaine/polyol-based deep eutectic systems for the recovery of bioactive protein derivative-rich extracts from sardine processing residues. Separation and Purification Technology 2021;276:119267. [DOI: 10.1016/j.seppur.2021.119267] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
77 Ying X, Agyei D, Udenigwe C, Adhikari B, Wang B. Manufacturing of Plant-Based Bioactive Peptides Using Enzymatic Methods to Meet Health and Sustainability Targets of the Sustainable Development Goals. Front Sustain Food Syst 2021;5. [DOI: 10.3389/fsufs.2021.769028] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
78 Samtiya M, Acharya S, Pandey KK, Aluko RE, Udenigwe CC, Dhewa T. Production, Purification, and Potential Health Applications of Edible Seeds' Bioactive Peptides: A Concise Review. Foods 2021;10:2696. [PMID: 34828976 DOI: 10.3390/foods10112696] [Cited by in Crossref: 1] [Cited by in F6Publishing: 4] [Article Influence: 0.5] [Reference Citation Analysis]
79 Rivas-Vela CI, Amaya-Llano SL, Castaño-Tostado E, Castillo-Herrera GA. Protein Hydrolysis by Subcritical Water: A New Perspective on Obtaining Bioactive Peptides. Molecules 2021;26:6655. [PMID: 34771063 DOI: 10.3390/molecules26216655] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
80 Palma-Albino C, Intiquilla A, Jiménez-Aliaga K, Rodríguez-Arana N, Solano E, Flores E, Zavaleta AI, Izaguirre V, Hernández-Ledesma B. Albumin from Erythrina edulis (Pajuro) as a Promising Source of Multifunctional Peptides. Antioxidants (Basel) 2021;10:1722. [PMID: 34829593 DOI: 10.3390/antiox10111722] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
81 Pontonio E, Montemurro M, De Gennaro GV, Miceli V, Rizzello CG. Antihypertensive Peptides from Ultrafiltration and Fermentation of the Ricotta Cheese Exhausted Whey: Design and Characterization of a Functional Ricotta Cheese. Foods 2021;10:2573. [PMID: 34828854 DOI: 10.3390/foods10112573] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
82 Bizzaro G, Vatland AK, Pampanin DM. The One-Health approach in seaweed food production. Environ Int 2021;158:106948. [PMID: 34695653 DOI: 10.1016/j.envint.2021.106948] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
83 Wang S, Zhang Y, Meng W, Dong Y, Zhang S, Teng L, Liu Y, Li L, Wang D. The Involvement of Macrophage Colony Stimulating Factor on Protein Hydrolysate Injection Mediated Hematopoietic Function Improvement. Cells 2021;10:2776. [PMID: 34685756 DOI: 10.3390/cells10102776] [Reference Citation Analysis]
84 Tang W, Dai R, Yan W, Zhang W, Bin Y, Xia E, Xia J. Identifying multi-functional bioactive peptide functions using multi-label deep learning. Brief Bioinform 2021:bbab414. [PMID: 34651655 DOI: 10.1093/bib/bbab414] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
85 Messner L, Antink MH, Guo T, Maas M, Beutel S. A versatile ceramic capillary membrane reactor system for continuous enzyme-catalyzed hydrolysis. Eng Life Sci 2021;21:527-38. [PMID: 34584517 DOI: 10.1002/elsc.202100027] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
86 Báez J, Fernández-Fernández AM, Tironi V, Bollati-Fogolín M, Añón MC, Medrano-Fernández A. Identification and characterization of antioxidant peptides obtained from the bioaccessible fraction of α-lactalbumin hydrolysate. J Food Sci 2021;86:4479-90. [PMID: 34549457 DOI: 10.1111/1750-3841.15918] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
87 Sun X, Ruan S, Zhuang Y, Sun L. Anti-osteoporosis effect and purification of peptides with high calcium-binding capacity from walnut protein hydrolysates. Food Funct 2021;12:8454-66. [PMID: 34190289 DOI: 10.1039/d1fo01094h] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
88 Indrati R. Bioactive Peptides from Legumes and Their Bioavailability. Legumes - Volume 2 [Working Title] 2021. [DOI: 10.5772/intechopen.99979] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
89 Kamal H, Mudgil P, Bhaskar B, Fisayo AF, Gan C, Maqsood S. Amaranth proteins as potential source of bioactive peptides with enhanced inhibition of enzymatic markers linked with hypertension and diabetes. Journal of Cereal Science 2021;101:103308. [DOI: 10.1016/j.jcs.2021.103308] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
90 Cirrincione S, Luganini A, Lamberti C, Manfredi M, Cavallarin L, Giuffrida MG, Pessione E. Donkey Milk Fermentation by Lactococcus lactis subsp. cremoris and Lactobacillus rhamnosus Affects the Antiviral and Antibacterial Milk Properties. Molecules 2021;26:5100. [PMID: 34443691 DOI: 10.3390/molecules26165100] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
91 Antony P, Vijayan R. Bioactive Peptides as Potential Nutraceuticals for Diabetes Therapy: A Comprehensive Review. Int J Mol Sci 2021;22:9059. [PMID: 34445765 DOI: 10.3390/ijms22169059] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
92 Pedro B, Guedes L, André R, Gaspar H, Vaz P, Ascensão L, Melo R, Luísa Serralheiro M. Undaria pinnatifida (U. pinnatifida) bioactivity: Antioxidant, gastro-intestinal motility, cholesterol biosynthesis and liver cell lines proteome. Journal of Functional Foods 2021;83:104567. [DOI: 10.1016/j.jff.2021.104567] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
93 Silva PCD, Toledo T, Brião V, Bertolin TE, Costa JAV. Development of extruded snacks enriched by bioactive peptides from microalga Spirulina sp. LEB 18. Food Bioscience 2021;42:101031. [DOI: 10.1016/j.fbio.2021.101031] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
94 Cotabarren J, Ozón B, Claver S, Garcia-Pardo J, Obregón WD. Purification and Identification of Novel Antioxidant Peptides Isolated from Geoffroea decorticans Seeds with Anticoagulant Activity. Pharmaceutics 2021;13:1153. [PMID: 34452114 DOI: 10.3390/pharmaceutics13081153] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
95 Chernukha I, Kotenkova E, Derbeneva S, Khvostov D. Bioactive Compounds of Porcine Hearts and Aortas May Improve Cardiovascular Disorders in Humans. Int J Environ Res Public Health 2021;18:7330. [PMID: 34299780 DOI: 10.3390/ijerph18147330] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
96 Avelar Z, Vicente AA, Saraiva JA, Rodrigues RM. The role of emergent processing technologies in tailoring plant protein functionality: New insights. Trends in Food Science & Technology 2021;113:219-31. [DOI: 10.1016/j.tifs.2021.05.004] [Cited by in Crossref: 16] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
97 Zarghami Dehaghani M, Yousefi F, Bagheri B, Seidi F, Hamed Mashhadzadeh A, Rabiee N, Zarrintaj P, Mostafavi E, Saeb MR, Kim YC. α-Helical Antimicrobial Peptide Encapsulation and Release from Boron Nitride Nanotubes: A Computational Study. Int J Nanomedicine 2021;16:4277-88. [PMID: 34194228 DOI: 10.2147/IJN.S313855] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
98 Tak Y, Kaur M, Amarowicz R, Bhatia S, Gautam C. Pulse Derived Bioactive Peptides as Novel Nutraceuticals: A Review. Int J Pept Res Ther 2021;27:2057-68. [DOI: 10.1007/s10989-021-10234-8] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
99 Tacias-Pascacio VG, Castañeda-Valbuena D, Morellon-Sterling R, Tavano O, Berenguer-Murcia Á, Vela-Gutiérrez G, Rather IA, Fernandez-Lafuente R. Bioactive peptides from fisheries residues: A review of use of papain in proteolysis reactions. Int J Biol Macromol 2021;184:415-28. [PMID: 34157329 DOI: 10.1016/j.ijbiomac.2021.06.076] [Cited by in Crossref: 17] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
100 Purushothaman K, Bhat SK, Siddappa S, Singh SA, Subbaiah R, Marathe GK, Rao G Appu Rao A. Aspartic protease-pepstatin A interactions: Structural insights on the thermal inactivation mechanism. Biochimie 2021;189:26-39. [PMID: 34116131 DOI: 10.1016/j.biochi.2021.06.002] [Reference Citation Analysis]
101 Shwaiki LN, Lynch KM, Arendt EK. Future of antimicrobial peptides derived from plants in food application – A focus on synthetic peptides. Trends in Food Science & Technology 2021;112:312-24. [DOI: 10.1016/j.tifs.2021.04.010] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 8.0] [Reference Citation Analysis]
102 Kemp DC, Kwon JY. Fish and Shellfish-Derived Anti-Inflammatory Protein Products: Properties and Mechanisms. Molecules 2021;26:3225. [PMID: 34072134 DOI: 10.3390/molecules26113225] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
103 Wang ES, Chu YH. How Social Norms Affect Consumer Intention to Purchase Certified Functional Foods: The Mediating Role of Perceived Effectiveness and Attitude. Foods 2021;10:1151. [PMID: 34063761 DOI: 10.3390/foods10061151] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
104 Wongsrangsap N, Chukiatsiri S. Purification and Identification of Novel Antioxidant Peptides from Enzymatically Hydrolysed Samia ricini Pupae. Molecules 2021;26:2588. [PMID: 33946694 DOI: 10.3390/molecules26092588] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
105 Morgan PT, Breen L. The role of protein hydrolysates for exercise-induced skeletal muscle recovery and adaptation: a current perspective. Nutr Metab (Lond) 2021;18:44. [PMID: 33882976 DOI: 10.1186/s12986-021-00574-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
106 Franco-molina MA, Santana-krímskaya SE, Zarate-triviño DG, Zapata-benavides P, Hernández-martínez SP, Cervantes-wong F, Rodríguez-padilla C. Bovine Dialyzable Leukocyte Extract IMMUNEPOTENT CRP: Evaluation of Biological Activity of the Modified Product. Applied Sciences 2021;11:3505. [DOI: 10.3390/app11083505] [Reference Citation Analysis]
107 Skrzypczak K, Fornal E, Domagała D, Gustaw W, Jabłońska-Ryś E, Sławińska A, Radzki W, Kononiuk A, Waśko A. Use of α-Lactalbumin and Caseinoglycomacropeptide as Biopeptide Precursors and as Functional Additives in Milk Beverages Fermented by L. helveticus. Int J Food Sci 2021;2021:8822161. [PMID: 33954168 DOI: 10.1155/2021/8822161] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
108 Irorita Fugaban JI, Vazquez Bucheli JE, Holzapfel WH, Todorov SD. Bacteriocinogenic Bacillus spp. Isolated from Korean Fermented Cabbage (Kimchi)—Beneficial or Hazardous? Fermentation 2021;7:56. [DOI: 10.3390/fermentation7020056] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
109 Gopinatth V, Mendez RL, Ballinger E, Kwon JY. Therapeutic Potential of Tuna Backbone Peptide and Its Analogs: An In Vitro and In Silico Study. Molecules 2021;26:2064. [PMID: 33916797 DOI: 10.3390/molecules26072064] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
110 Priyanto AD, Putranto AW, Hsu JL. The potential of various seeds as angiotensin-I converting enzyme inhibitory peptides derived from protein hydrolysate: a short review. IOP Conf Ser : Earth Environ Sci 2021;733:012130. [DOI: 10.1088/1755-1315/733/1/012130] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
111 Murali C, Mudgil P, Gan CY, Tarazi H, El-Awady R, Abdalla Y, Amin A, Maqsood S. Camel whey protein hydrolysates induced G2/M cellcycle arrest in human colorectal carcinoma. Sci Rep 2021;11:7062. [PMID: 33782460 DOI: 10.1038/s41598-021-86391-z] [Cited by in Crossref: 30] [Cited by in F6Publishing: 31] [Article Influence: 15.0] [Reference Citation Analysis]
112 Álvarez C, Pando D. Encapsulation Technologies Applied to Food Processing. In: Pathania S, Tiwari BK, editors. Food Formulation. Wiley; 2021. pp. 121-45. [DOI: 10.1002/9781119614760.ch7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
113 Wongaem A, Reamtong O, Srimongkol P, Sangtanoo P, Saisavoey T, Karnchanatat A. Antioxidant properties of peptides obtained from the split gill mushroom (Schizophyllum commune). J Food Sci Technol 2021;58:680-91. [PMID: 33568862 DOI: 10.1007/s13197-020-04582-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
114 Ferrero RL, Soto-Maldonado C, Weinstein-Oppenheimer C, Cabrera-Muñoz Z, Zúñiga-Hansen ME. Antiproliferative Rapeseed Defatted Meal Protein and Their Hydrolysates on MCF-7 Breast Cancer Cells and Human Fibroblasts. Foods 2021;10:309. [PMID: 33546198 DOI: 10.3390/foods10020309] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
115 Barrero JA, Cruz CM, Casallas J, Vásquez JS. Evaluación in silico de péptidos bioactivos derivados de la digestión de proteínas presentes en la leche de bovino (B. taurus), oveja (O. aries), cabra (C. hircus) y búfalo (B. bubalis). TecnoL 2021;24:e1731. [DOI: 10.22430/22565337.1731] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
116 Olivera-Montenegro L, Best I, Gil-Saldarriaga A. Effect of pretreatment by supercritical fluids on antioxidant activity of protein hydrolyzate from quinoa (Chenopodium quinoa Willd.). Food Sci Nutr 2021;9:574-82. [PMID: 33473318 DOI: 10.1002/fsn3.2027] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
117 Ha DJ, Kim J, Kim S, Go GW, Whang KY. Dietary Whey Protein Supplementation Increases Immunoglobulin G Production by Affecting Helper T Cell Populations after Antigen Exposure. Foods 2021;10:194. [PMID: 33477967 DOI: 10.3390/foods10010194] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
118 Ribeiro E, Rocha TS, Prudencio SH. Potential of green and roasted coffee beans and spent coffee grounds to provide bioactive peptides. Food Chem 2021;348:129061. [PMID: 33550122 DOI: 10.1016/j.foodchem.2021.129061] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
119 Díaz-godínez G, Díaz R. Fungal Productions of Biological Active Proteins. Fungal Biology 2021. [DOI: 10.1007/978-3-030-64406-2_5] [Reference Citation Analysis]
120 Hafeez Z, Benoit S, Cakir-kiefer C, Dary A, Miclo L. Food protein-derived anxiolytic peptides: their potential role in anxiety management. Food Funct 2021;12:1415-31. [DOI: 10.1039/d0fo02432e] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
121 Salvado AFA, Leitão JH, Fonseca LP. Enzymatic Production of Bioactive Peptides from Whey Proteins: Their Active Role and Potential Health Benefits. Enzymes for Solving Humankind's Problems 2021. [DOI: 10.1007/978-3-030-58315-6_15] [Reference Citation Analysis]
122 Sato K. Methodologies for bioavailability assessment of food-derived peptide. Biologically Active Peptides 2021. [DOI: 10.1016/b978-0-12-821389-6.00018-2] [Reference Citation Analysis]
123 Chen F, Lin L, Zhao M, Zhu Q. Modification of Cucumaria frondosa hydrolysate through maillard reaction for sea cucumber peptide based-beverage. LWT 2021;136:110329. [DOI: 10.1016/j.lwt.2020.110329] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
124 Shah P, Kumar A, Kumar V, Tripathi MK. Millets, Phytochemicals, and Their Health Attributes. Millets and Millet Technology 2021. [DOI: 10.1007/978-981-16-0676-2_9] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
125 Nascimento RDPD, Moya AMTM, Machado APDF, Geraldi MV, Diez-echave P, Vezza T, Galvez J, Cazarin CBB, Maróstica Junior MR. Review on the potential application of non-phenolic compounds from native Latin American food byproducts in inflammatory bowel diseases. Food Research International 2021;139:109796. [DOI: 10.1016/j.foodres.2020.109796] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
126 Carpena M, da Pereira R, Garcia-perez P, Otero P, Soria-lopez A, Chamorro F, Alcaide-sancho J, Fraga-corral M, Prieto MA, Simal-gandara J. An Overview of Food Bioactive Compounds and Their Properties. Food Bioactive Ingredients 2021. [DOI: 10.1007/978-3-030-84643-5_2] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
127 Barati M, Javanmardi F, Mousavi Jazayeri SMH, Jabbari M, Rahmani J, Barati F, Nickho H, Davoodi SH, Roshanravan N, Mousavi Khaneghah A. Techniques, perspectives, and challenges of bioactive peptide generation: A comprehensive systematic review. Compr Rev Food Sci Food Saf 2020;19:1488-520. [PMID: 33337080 DOI: 10.1111/1541-4337.12578] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
128 Tonolo F, Moretto L, Grinzato A, Fiorese F, Folda A, Scalcon V, Ferro S, Arrigoni G, Bellamio M, Feller E, Bindoli A, Marin O, Rigobello MP. Fermented Soy-Derived Bioactive Peptides Selected by a Molecular Docking Approach Show Antioxidant Properties Involving the Keap1/Nrf2 Pathway. Antioxidants (Basel) 2020;9:E1306. [PMID: 33352784 DOI: 10.3390/antiox9121306] [Cited by in Crossref: 18] [Cited by in F6Publishing: 22] [Article Influence: 6.0] [Reference Citation Analysis]
129 Chourasia R, Abedin MM, Chiring Phukon L, Sahoo D, Singh SP, Rai AK. Biotechnological approaches for the production of designer cheese with improved functionality. Compr Rev Food Sci Food Saf 2021;20:960-79. [PMID: 33325160 DOI: 10.1111/1541-4337.12680] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
130 Chandrasekaran S, Luna-Vital D, de Mejia EG. Identification and Comparison of Peptides from Chickpea Protein Hydrolysates Using Either Bromelain or Gastrointestinal Enzymes and Their Relationship with Markers of Type 2 Diabetes and Bitterness. Nutrients 2020;12:E3843. [PMID: 33339265 DOI: 10.3390/nu12123843] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
131 Acquah C, Dzuvor CKO, Tosh S, Agyei D. Anti-diabetic effects of bioactive peptides: recent advances and clinical implications. Crit Rev Food Sci Nutr 2020;:1-14. [PMID: 33317324 DOI: 10.1080/10408398.2020.1851168] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]
132 Valenzuela Zamudio F, Segura Campos MR. Amaranth, quinoa and chia bioactive peptides: a comprehensive review on three ancient grains and their potential role in management and prevention of Type 2 diabetes. Crit Rev Food Sci Nutr 2020;:1-15. [PMID: 33305588 DOI: 10.1080/10408398.2020.1857683] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
133 Shivanna SK, Nataraj BH. Revisiting therapeutic and toxicological fingerprints of milk-derived bioactive peptides: An overview. Food Bioscience 2020;38:100771. [DOI: 10.1016/j.fbio.2020.100771] [Cited by in Crossref: 12] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
134 Akdeniz Oktay B, Özbaş ZY. FERMENTE GIDALARIN İNSAN SAĞLIĞI ÜZERİNDEKİ ETKİLERİ. GIDA / THE JOURNAL OF FOOD 2020. [DOI: 10.15237/gida.gd20105] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
135 Tyagi A, Daliri EB, Kwami Ofosu F, Yeon SJ, Oh DH. Food-Derived Opioid Peptides in Human Health: A Review. Int J Mol Sci 2020;21:E8825. [PMID: 33233481 DOI: 10.3390/ijms21228825] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 5.7] [Reference Citation Analysis]
136 Díaz-Gómez JL, Neundorf I, López-Castillo LM, Castorena-Torres F, Serna-Saldívar SO, García-Lara S. In Silico Analysis and In Vitro Characterization of the Bioactive Profile of Three Novel Peptides Identified from 19 kDa α-Zein Sequences of Maize. Molecules 2020;25:E5405. [PMID: 33227894 DOI: 10.3390/molecules25225405] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
137 López-Pedrouso M, Lorenzo JM, Gagaoua M, Franco D. Application of Proteomic Technologies to Assess the Quality of Raw Pork and Pork Products: An Overview from Farm-To-Fork. Biology (Basel) 2020;9:E393. [PMID: 33187082 DOI: 10.3390/biology9110393] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
138 Festa M, Sansone C, Brunet C, Crocetta F, Di Paola L, Lombardo M, Bruno A, Noonan DM, Albini A. Cardiovascular Active Peptides of Marine Origin with ACE Inhibitory Activities: Potential Role as Anti-Hypertensive Drugs and in Prevention of SARS-CoV-2 Infection. Int J Mol Sci 2020;21:E8364. [PMID: 33171852 DOI: 10.3390/ijms21218364] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
139 Roshanak S, Shahidi F, Tabatabaei Yazdi F, Javadmanesh A, Movaffagh J. Evaluation of Antimicrobial Activity of Buforin I and Nisin and Synergistic Effect of the Combination of them as a Novel Antimicrobial Preservative. J Food Prot 2020;83:2018-25. [PMID: 32502264 DOI: 10.4315/JFP-20-127] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 4.3] [Reference Citation Analysis]
140 Raveschot C, Deracinois B, Bertrand E, Flahaut C, Frémont M, Drider D, Dhulster P, Cudennec B, Coutte F. Integrated Continuous Bioprocess Development for ACE-Inhibitory Peptide Production by Lactobacillus helveticus Strains in Membrane Bioreactor. Front Bioeng Biotechnol 2020;8:585815. [PMID: 33102467 DOI: 10.3389/fbioe.2020.585815] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
141 Skrzypczak K, Gustaw W, Fornal E, Kononiuk A, Michalak-majewska M, Radzki W, Waśko A. Functional and Technological Potential of Whey Protein Isolate in Production of Milk Beverages Fermented by New Strains of Lactobacillus helveticus. Applied Sciences 2020;10:7089. [DOI: 10.3390/app10207089] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
142 Riyadi PH, Tanod WA, Wahyudi D, Susanto E, Fahmi AS, Aisiah S. Potential of tilapia (Oreochromis niloticus) viscera bioactive peptides as antiviral for SARS-CoV-2 (COVID 19). IOP Conf Ser : Earth Environ Sci 2020;584:012004. [DOI: 10.1088/1755-1315/584/1/012004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
143 Domínguez-pérez LA, Beltrán-barrientos LM, González-córdova AF, Hernández-mendoza A, Vallejo-cordoba B. Artisanal cocoa bean fermentation: From cocoa bean proteins to bioactive peptides with potential health benefits. Journal of Functional Foods 2020;73:104134. [DOI: 10.1016/j.jff.2020.104134] [Cited by in Crossref: 10] [Cited by in F6Publishing: 6] [Article Influence: 3.3] [Reference Citation Analysis]
144 Khan MM, Kim YK, Bilkis T, Suh JW, Lee DY, Yoo JC. Reduction of Oxidative Stress through Activating the Nrf2 mediated HO-1 Antioxidant Efficacy Signaling Pathway by MS15, an Antimicrobial Peptide from Bacillus velezensis. Antioxidants (Basel) 2020;9:E934. [PMID: 33003432 DOI: 10.3390/antiox9100934] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
145 Kennedy K, Keogh B, Lopez C, Adelfio A, Molloy B, Kerr A, Wall AM, Jalowicki G, Holton TA, Khaldi N. An Artificial Intelligence Characterised Functional Ingredient, Derived from Rice, Inhibits TNF-α and Significantly Improves Physical Strength in an Inflammaging Population. Foods 2020;9:E1147. [PMID: 32825524 DOI: 10.3390/foods9091147] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 3.3] [Reference Citation Analysis]
146 Zhou J, Chen M, Wu S, Liao X, Wang J, Wu Q, Zhuang M, Ding Y. A review on mushroom-derived bioactive peptides: Preparation and biological activities. Food Research International 2020;134:109230. [DOI: 10.1016/j.foodres.2020.109230] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
147 Nguyen TT, Heimann K, Zhang W. Protein Recovery from Underutilised Marine Bioresources for Product Development with Nutraceutical and Pharmaceutical Bioactivities. Mar Drugs 2020;18:E391. [PMID: 32727001 DOI: 10.3390/md18080391] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
148 Li S, Zhang W, Xue H, Xing R, Yan X. Tumor microenvironment-oriented adaptive nanodrugs based on peptide self-assembly. Chem Sci 2020;11:8644-56. [PMID: 34123123 DOI: 10.1039/d0sc02937h] [Cited by in Crossref: 29] [Cited by in F6Publishing: 34] [Article Influence: 9.7] [Reference Citation Analysis]
149 Rivero-Pino F, Espejo-Carpio FJ, Guadix EM. Antidiabetic Food-Derived Peptides for Functional Feeding: Production, Functionality and In Vivo Evidences. Foods 2020;9:E983. [PMID: 32718070 DOI: 10.3390/foods9080983] [Cited by in Crossref: 23] [Cited by in F6Publishing: 25] [Article Influence: 7.7] [Reference Citation Analysis]
150 Romero-garay MG, Martínez-montaño E, Hernández-mendoza A, Vallejo-cordoba B, González-córdova AF, Montalvo-gonzález E, García-magaña MDL. Bromelia karatas and Bromelia pinguin: sources of plant proteases used for obtaining antioxidant hydrolysates from chicken and fish by-products. Appl Biol Chem 2020;63. [DOI: 10.1186/s13765-020-00525-x] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.7] [Reference Citation Analysis]
151 Bahari AN, Saari N, Salim N, Ashari SE. Response Factorial Design Analysis on Papain-Generated Hydrolysates from Actinopyga lecanora for Determination of Antioxidant and Antityrosinase Activities. Molecules 2020;25:E2663. [PMID: 32521731 DOI: 10.3390/molecules25112663] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 3.7] [Reference Citation Analysis]
152 Sitanggang AB, Lesmana M, Budijanto S. Membrane-based preparative methods and bioactivities mapping of tempe-based peptides. Food Chem 2020;329:127193. [PMID: 32516711 DOI: 10.1016/j.foodchem.2020.127193] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
153 Lin L, Zhu Q, Zheng L, Zhao M, Fan J, Liu S. Preparation of sea cucumber (Stichopus variegates) peptide fraction with desired organoleptic property and its anti-aging activity in fruit flies and D-galactose-induced aging mice. Journal of Functional Foods 2020;69:103954. [DOI: 10.1016/j.jff.2020.103954] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
154 Yalçin E, Rakicioğlu N. Biyoaktif Besin Peptitleri ve Sağlık Üzerine Etkileri. Düzce Üniversitesi Sağlık Bilimleri Enstitüsü Dergisi 2020. [DOI: 10.33631/duzcesbed.559968] [Reference Citation Analysis]
155 Morales D, Miguel M, Garcés-Rimón M. Pseudocereals: a novel source of biologically active peptides. Crit Rev Food Sci Nutr 2021;61:1537-44. [PMID: 32406747 DOI: 10.1080/10408398.2020.1761774] [Cited by in Crossref: 17] [Cited by in F6Publishing: 12] [Article Influence: 5.7] [Reference Citation Analysis]
156 Sharma P, Kaur H, Kehinde BA, Chhikara N, Sharma D, Panghal A. Food-Derived Anticancer Peptides: A Review. Int J Pept Res Ther 2021;27:55-70. [DOI: 10.1007/s10989-020-10063-1] [Cited by in Crossref: 17] [Cited by in F6Publishing: 9] [Article Influence: 5.7] [Reference Citation Analysis]
157 Maharani R, Hidayat AT, Sabana IR, Firdausi A, Aqmarina A, Kurnia DY, Amrullah MH, Zainuddin A, Harneti D, Nurlelasari, Supratman U. Synthesis, Antioxidant Activity, and Structure–Activity Relationship of SCAP1 Analogues. Int J Pept Res Ther 2021;27:17-23. [DOI: 10.1007/s10989-020-10061-3] [Cited by in Crossref: 1] [Article Influence: 0.3] [Reference Citation Analysis]
158 Maldonado-torres DA, Fernández-velasco DA, Morales-olán G, Rosas-cárdenas FDF, Luna-suárez S. Modification of Vegetable Proteins to Release Bioactive Peptides Able to Treat Metabolic Syndrome—In Silico Assessment. Applied Sciences 2020;10:2604. [DOI: 10.3390/app10072604] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
159 Zulkifli Z, Rahmat Z. Protein Antioxidant Capacity from Moringa Oleifera Fresh and Commercialised Leaf. Biosci , Biotech Res Asia 2020;17:155-161. [DOI: 10.13005/bbra/2820] [Reference Citation Analysis]
160 Gürkan H, Hayaloğlu AA. ACI TAT ALGILANMA MEKANİZMASI, SÜT ÜRÜNLERİNDE PEPTİT KAYNAKLI ACILIĞIN GİDERİLMESİ VE GÜNCEL YAKLAŞIMLAR. GIDA / THE JOURNAL OF FOOD 2020. [DOI: 10.15237/gida.gd19151] [Reference Citation Analysis]
161 Li X, Guo M, Chi J, Ma J. Bioactive Peptides from Walnut Residue Protein. Molecules 2020;25:E1285. [PMID: 32178315 DOI: 10.3390/molecules25061285] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 2.7] [Reference Citation Analysis]
162 Bechaux J, Gatellier P, Le Page JF, Drillet Y, Sante-Lhoutellier V. A comprehensive review of bioactive peptides obtained from animal byproducts and their applications. Food Funct 2019;10:6244-66. [PMID: 31577308 DOI: 10.1039/c9fo01546a] [Cited by in Crossref: 56] [Cited by in F6Publishing: 58] [Article Influence: 18.7] [Reference Citation Analysis]
163 Aguirre-Cruz G, León-López A, Cruz-Gómez V, Jiménez-Alvarado R, Aguirre-Álvarez G. Collagen Hydrolysates for Skin Protection: Oral Administration and Topical Formulation. Antioxidants (Basel) 2020;9:E181. [PMID: 32098294 DOI: 10.3390/antiox9020181] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
164 Montesano D, Gallo M, Blasi F, Cossignani L. Biopeptides from vegetable proteins: new scientific evidences. Current Opinion in Food Science 2020;31:31-7. [DOI: 10.1016/j.cofs.2019.10.008] [Cited by in Crossref: 26] [Cited by in F6Publishing: 15] [Article Influence: 8.7] [Reference Citation Analysis]
165 Nurilmala M, Hizbullah HH, Karnia E, Kusumaningtyas E, Ochiai Y. Characterization and Antioxidant Activity of Collagen, Gelatin, and the Derived Peptides from Yellowfin Tuna (Thunnus albacares) Skin. Mar Drugs 2020;18:E98. [PMID: 32023998 DOI: 10.3390/md18020098] [Cited by in Crossref: 36] [Cited by in F6Publishing: 37] [Article Influence: 12.0] [Reference Citation Analysis]
166 Arena S, Renzone G, Scaloni A. A multi-approach peptidomic analysis of hen egg white reveals novel putative bioactive molecules. J Proteomics 2020;215:103646. [PMID: 31927067 DOI: 10.1016/j.jprot.2020.103646] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
167 Petsantad P, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Chaitanawisuti N, Karnchanatat A. The antioxidant potential of peptides obtained from the spotted babylon snail ( Babylonia areolata ) in treating human colon adenocarcinoma (Caco-2) cells. RSC Adv 2020;10:25746-57. [DOI: 10.1039/d0ra03261a] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
168 Mamo G, Mattiasson B. Alkaliphiles: The Versatile Tools in Biotechnology. Adv Biochem Eng Biotechnol 2020;172:1-51. [PMID: 32342125 DOI: 10.1007/10_2020_126] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
169 Güneş FE. Pro-/Anti-Inflammatory Bioactive Proteins and Peptides. Role of Nutrition in Providing Pro-/Anti-Inflammatory Balance 2020. [DOI: 10.4018/978-1-7998-3594-3.ch005] [Reference Citation Analysis]
170 Sangtitanu T, Sangtanoo P, Srimongkol P, Saisavoey T, Reamtong O, Karnchanatat A. Peptides obtained from edible mushrooms: Hericium erinaceus offers the ability to scavenge free radicals and induce apoptosis in lung cancer cells in humans. Food Funct 2020;11:4927-39. [DOI: 10.1039/d0fo00227e] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
171 Tiwari P, Chintagunta AD, Dirisala VR, Sampath Kumar NS. Legume Derived Bioactive Peptides. Sustainable Agriculture Reviews 2020. [DOI: 10.1007/978-3-030-53017-4_2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
172 Vilgis TA. Von Diäten zu Ideologien. Biophysik der Ernährung 2020. [DOI: 10.1007/978-3-662-61151-7_5] [Reference Citation Analysis]
173 Worsztynowicz P, Białas W, Grajek W. Integrated approach for obtaining bioactive peptides from whey proteins hydrolysed using a new proteolytic lactic acid bacteria. Food Chem 2020;312:126035. [PMID: 31901822 DOI: 10.1016/j.foodchem.2019.126035] [Cited by in Crossref: 28] [Cited by in F6Publishing: 18] [Article Influence: 7.0] [Reference Citation Analysis]
174 Pimentel FB, Alves RC, Harnedy PA, Fitzgerald RJ, Oliveira MBP. Macroalgal-derived protein hydrolysates and bioactive peptides: Enzymatic release and potential health enhancing properties. Trends in Food Science & Technology 2019;93:106-24. [DOI: 10.1016/j.tifs.2019.09.006] [Cited by in Crossref: 30] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
175 Gaspar‐pintiliescu A, Oancea A, Cotarlet M, Vasile AM, Bahrim GE, Shaposhnikov S, Craciunescu O, Oprita EI. Angiotensin‐converting enzyme inhibition, antioxidant activity and cytotoxicity of bioactive peptides from fermented bovine colostrum. Int J Dairy Technol 2019;73:108-16. [DOI: 10.1111/1471-0307.12659] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 4.8] [Reference Citation Analysis]
176 Real Hernandez LM, Gonzalez de Mejia E. Enzymatic Production, Bioactivity, and Bitterness of Chickpea ( Cicer arietinum ) Peptides. Comprehensive Reviews in Food Science and Food Safety 2019;18:1913-46. [DOI: 10.1111/1541-4337.12504] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
177 Chen L, Ejima A, Gu R, Lu J, Cai M, Sato K. Presence of Exopeptidase-Resistant and Susceptible Peptides in a Bacterial Protease Digest of Corn Gluten. J Agric Food Chem 2019;67:11948-54. [DOI: 10.1021/acs.jafc.9b04444] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
178 Sannasimuthu A, Arockiaraj J. Intracellular free radical scavenging activity and protective role of mammalian cells by antioxidant peptide from thioredoxin disulfide reductase of Arthrospira platensis. Journal of Functional Foods 2019;61:103513. [DOI: 10.1016/j.jff.2019.103513] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 4.5] [Reference Citation Analysis]
179 Rendon-Rosales MÁ, Torres-Llanez MJ, González-Córdova AF, Hernández-Mendoza A, Mazorra-Manzano MA, Vallejo-Cordoba B. In Vitro Antithrombotic and Hypocholesterolemic Activities of Milk Fermented with Specific Strains of Lactococcus lactis. Nutrients 2019;11:E2150. [PMID: 31505734 DOI: 10.3390/nu11092150] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 3.5] [Reference Citation Analysis]
180 Mada SB, Ugwu CP, Abarshi MM. Health Promoting Effects of Food-Derived Bioactive Peptides: A Review. Int J Pept Res Ther 2020;26:831-48. [DOI: 10.1007/s10989-019-09890-8] [Cited by in Crossref: 30] [Cited by in F6Publishing: 32] [Article Influence: 7.5] [Reference Citation Analysis]
181 Imai K, Shimizu K, Honda H. Predictive selection and evaluation of appropriate functional peptides for intestinal delivery with a porous silica gel. Journal of Bioscience and Bioengineering 2019;128:44-9. [DOI: 10.1016/j.jbiosc.2019.01.001] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.8] [Reference Citation Analysis]
182 Chalamaiah M, Keskin Ulug S, Hong H, Wu J. Regulatory requirements of bioactive peptides (protein hydrolysates) from food proteins. Journal of Functional Foods 2019;58:123-9. [DOI: 10.1016/j.jff.2019.04.050] [Cited by in Crossref: 76] [Cited by in F6Publishing: 44] [Article Influence: 19.0] [Reference Citation Analysis]
183 Indiano-Romacho P, Fernández-Tomé S, Amigo L, Hernández-Ledesma B. Multifunctionality of lunasin and peptides released during its simulated gastrointestinal digestion. Food Res Int 2019;125:108513. [PMID: 31554062 DOI: 10.1016/j.foodres.2019.108513] [Cited by in Crossref: 21] [Cited by in F6Publishing: 24] [Article Influence: 5.3] [Reference Citation Analysis]
184 Kandemir-Cavas C, Pérez-Sanchez H, Mert-Ozupek N, Cavas L. In Silico Analysis of Bioactive Peptides in Invasive Sea Grass Halophila stipulacea. Cells 2019;8:E557. [PMID: 31181665 DOI: 10.3390/cells8060557] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
185 Venegas-Ortega MG, Flores-Gallegos AC, Martínez-Hernández JL, Aguilar CN, Nevárez-Moorillón GV. Production of Bioactive Peptides from Lactic Acid Bacteria: A Sustainable Approach for Healthier Foods. Compr Rev Food Sci Food Saf 2019;18:1039-51. [PMID: 33336997 DOI: 10.1111/1541-4337.12455] [Cited by in Crossref: 47] [Cited by in F6Publishing: 50] [Article Influence: 11.8] [Reference Citation Analysis]
186 De Cicco M, Mamone G, Di Stasio L, Ferranti P, Addeo F, Picariello G. Hidden "Digestome": Current Analytical Approaches Provide Incomplete Peptide Inventories of Food Digests. J Agric Food Chem 2019;67:7775-82. [PMID: 31088053 DOI: 10.1021/acs.jafc.9b02342] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
187 Quah Y, Mohd Ismail NI, Ooi JLS, Affendi YA, Abd Manan F, Teh LK, Wong FC, Chai TT. Purification and identification of novel cytotoxic oligopeptides from soft coral Sarcophyton glaucum. J Zhejiang Univ Sci B 2019;20:59-70. [PMID: 30614230 DOI: 10.1631/jzus.B1700586] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
188 Lammi C, Aiello G, Boschin G, Arnoldi A. Multifunctional peptides for the prevention of cardiovascular disease: A new concept in the area of bioactive food-derived peptides. Journal of Functional Foods 2019;55:135-45. [DOI: 10.1016/j.jff.2019.02.016] [Cited by in Crossref: 75] [Cited by in F6Publishing: 75] [Article Influence: 18.8] [Reference Citation Analysis]
189 Aripovsky AV, Titov VN. [Biologocally active peptides in metabolism regulation. Peptons, peptides, amino acids, fatty acids, lipoproteins, lipids, and the effect of nutriceuticals.]. Klin Lab Diagn 2019;64:14-23. [PMID: 30912879 DOI: 10.18821/0869-2084-2019-64-1-14-23] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
190 Farhana MN, Tan HL, Lim YP, Maqsood-ul-haque SNS. Isolation of Antimicrobial Peptide from Food Protein Hydrolysates: An Overview. KEM 2019;797:168-176. [DOI: 10.4028/www.scientific.net/kem.797.168] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
191 Bhandari D, Rafiq S, Gat Y, Gat P, Waghmare R, Kumar V. A Review on Bioactive Peptides: Physiological Functions, Bioavailability and Safety. Int J Pept Res Ther 2020;26:139-50. [DOI: 10.1007/s10989-019-09823-5] [Cited by in Crossref: 83] [Cited by in F6Publishing: 45] [Article Influence: 20.8] [Reference Citation Analysis]
192 Cheng S, Tu M, Liu H, Zhao G, Du M. Food-derived antithrombotic peptides: Preparation, identification, and interactions with thrombin. Crit Rev Food Sci Nutr 2019;59:S81-95. [PMID: 30740983 DOI: 10.1080/10408398.2018.1524363] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
193 Morales R, Martinez M, Pilosof A. pH-induced cold gelation of caseinglycomacropeptide emulsions. Food Hydrocolloids 2019;87:805-13. [DOI: 10.1016/j.foodhyd.2018.09.019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
194 Kaur J, Kumar V, Sharma K, Kaur S, Gat Y, Goyal A, Tanwar B. Opioid Peptides: An Overview of Functional Significance. Int J Pept Res Ther 2020;26:33-41. [DOI: 10.1007/s10989-019-09813-7] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 4.3] [Reference Citation Analysis]
195 Chai T, Tan Y, Ee K, Xiao J, Wong F. Seeds, fermented foods, and agricultural by-products as sources of plant-derived antibacterial peptides. Critical Reviews in Food Science and Nutrition 2019;59:S162-77. [DOI: 10.1080/10408398.2018.1561418] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 5.8] [Reference Citation Analysis]
196 Ugwu CP, Abarshi MM, Mada SB, Sanusi B, Nzelibe HC. Camel and Horse Milk Casein Hydrolysates Exhibit Angiotensin Converting Enzyme Inhibitory and Antioxidative Effects In Vitro and In Silico. Int J Pept Res Ther 2019;25:1595-604. [DOI: 10.1007/s10989-018-09802-2] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
197 Llewellyn CA, Kapoore RV, Lovitt RW, Greig C, Fuentes-grünewald C, Kultschar B. Deriving Economic Value from Metabolites in Cyanobacteria. Grand Challenges in Algae Biotechnology 2019. [DOI: 10.1007/978-3-030-25233-5_15] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
198 Oza VH, Aicher JK, Reed LK. Random Forest Analysis of Untargeted Metabolomics Data Suggests Increased Use of Omega Fatty Acid Oxidation Pathway in Drosophila Melanogaster Larvae Fed a Medium Chain Fatty Acid Rich High-Fat Diet. Metabolites 2018;9:E5. [PMID: 30602659 DOI: 10.3390/metabo9010005] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
199 Rohm F, Skurk T, Daniel H, Spanier B. Appearance of Di- and Tripeptides in Human Plasma after a Protein Meal Does Not Correlate with PEPT1 Substrate Selectivity. Mol Nutr Food Res 2019;63:1801094. [DOI: 10.1002/mnfr.201801094] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
200 Chakrabarti S, Guha S, Majumder K. Food-Derived Bioactive Peptides in Human Health: Challenges and Opportunities. Nutrients 2018;10:E1738. [PMID: 30424533 DOI: 10.3390/nu10111738] [Cited by in Crossref: 263] [Cited by in F6Publishing: 283] [Article Influence: 52.6] [Reference Citation Analysis]
201 Raveschot C, Cudennec B, Coutte F, Flahaut C, Fremont M, Drider D, Dhulster P. Production of Bioactive Peptides by Lactobacillus Species: From Gene to Application. Front Microbiol 2018;9:2354. [PMID: 30386307 DOI: 10.3389/fmicb.2018.02354] [Cited by in Crossref: 90] [Cited by in F6Publishing: 94] [Article Influence: 18.0] [Reference Citation Analysis]
202 Álvarez García C, Marcet Manrique I. Meat Proteins as a Potential Source of Bioactive Ingredients for Food and Pharmaceutical Use. In: Hayes M, editor. Novel Proteins for Food, Pharmaceuticals and Agriculture. Chichester: John Wiley & Sons, Ltd; 2018. pp. 29-49. [DOI: 10.1002/9781119385332.ch2] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
203 Yi Y, Lv Y, Zhang L, Yang J, Shi Q. High Throughput Identification of Antihypertensive Peptides from Fish Proteome Datasets. Mar Drugs 2018;16:E365. [PMID: 30279337 DOI: 10.3390/md16100365] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
204 Marciniak A, Suwal S, Naderi N, Pouliot Y, Doyen A. Enhancing enzymatic hydrolysis of food proteins and production of bioactive peptides using high hydrostatic pressure technology. Trends in Food Science & Technology 2018;80:187-98. [DOI: 10.1016/j.tifs.2018.08.013] [Cited by in Crossref: 53] [Cited by in F6Publishing: 28] [Article Influence: 10.6] [Reference Citation Analysis]
205 Luo C, Gwekwe B, Choto P, Miao W, Chen M, Xue C, Xu Y, Yin X, Magawa G, Wu D, Akida JS, Wang L, Li Q, Deng S. Bitter peptides from enzymatically hydrolyzed protein increase the number of leucocytes and lysozyme activity of large yellow croaker (Larimichthys crocea). Fish & Shellfish Immunology 2018;81:130-4. [DOI: 10.1016/j.fsi.2018.07.013] [Cited by in Crossref: 13] [Cited by in F6Publishing: 12] [Article Influence: 2.6] [Reference Citation Analysis]
206 Slominsky PA, Shadrina MI. Peptide Pharmaceuticals: Opportunities, Prospects, and Limitations. Mol Genet Microbiol Virol 2018;33:8-14. [DOI: 10.3103/s0891416818010123] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
207 Wong FC, Xiao J, Ong MG, Pang MJ, Wong SJ, Teh LK, Chai TT. Identification and characterization of antioxidant peptides from hydrolysate of blue-spotted stingray and their stability against thermal, pH and simulated gastrointestinal digestion treatments. Food Chem 2019;271:614-22. [PMID: 30236723 DOI: 10.1016/j.foodchem.2018.07.206] [Cited by in Crossref: 63] [Cited by in F6Publishing: 64] [Article Influence: 12.6] [Reference Citation Analysis]
208 Ahtesh FB, Stojanovska L, Apostolopoulos V. Anti-hypertensive peptides released from milk proteins by probiotics. Maturitas 2018;115:103-9. [PMID: 30049341 DOI: 10.1016/j.maturitas.2018.06.016] [Cited by in Crossref: 35] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
209 Daliri EB, Lee BH, Park BJ, Kim SH, Oh DH. Antihypertensive peptides from whey proteins fermented by lactic acid bacteria. Food Sci Biotechnol 2018;27:1781-9. [PMID: 30483443 DOI: 10.1007/s10068-018-0423-0] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 7.6] [Reference Citation Analysis]
210 D'souza RN, Grimbs A, Grimbs S, Behrends B, Corno M, Ullrich MS, Kuhnert N. Degradation of cocoa proteins into oligopeptides during spontaneous fermentation of cocoa beans. Food Research International 2018;109:506-16. [DOI: 10.1016/j.foodres.2018.04.068] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 7.6] [Reference Citation Analysis]
211 Daliri EB, Lee BH, Park MH, Kim J, Oh D. Novel angiotensin I-converting enzyme inhibitory peptides from soybean protein isolates fermented by Pediococcus pentosaceus SDL1409. LWT 2018;93:88-93. [DOI: 10.1016/j.lwt.2018.03.026] [Cited by in Crossref: 35] [Cited by in F6Publishing: 25] [Article Influence: 7.0] [Reference Citation Analysis]
212 Muhialdin B, Sukor R, Ismail N, Ahmad S, Me N, Hussin A. The Effects of Fermentation Process on the Chemical Composition and Biological Activity of Spider Flower (Gynandropsis gynandra). J PURE APPL MICROBIO 2018;12:497-504. [DOI: 10.22207/jpam.12.2.08] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
213 Kopf-bolanz KA. Adjusting Bioactive Functions of Dairy Products via Processing. Technological Approaches for Novel Applications in Dairy Processing 2018. [DOI: 10.5772/intechopen.72927] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
214 Karpiński TM, Adamczak A. Anticancer Activity of Bacterial Proteins and Peptides. Pharmaceutics 2018;10:E54. [PMID: 29710857 DOI: 10.3390/pharmaceutics10020054] [Cited by in Crossref: 92] [Cited by in F6Publishing: 96] [Article Influence: 18.4] [Reference Citation Analysis]
215 Hayes M. Food Proteins and Bioactive Peptides: New and Novel Sources, Characterisation Strategies and Applications. Foods 2018;7:E38. [PMID: 29538293 DOI: 10.3390/foods7030038] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 5.2] [Reference Citation Analysis]
216 Slominskiĭ PA, Shadrina MI. Peptide pharmaceuticals: opportunities, prospects and limitations. Mol genet mikrobiol virusol 2018;36:8. [DOI: 10.18821/0208-0613-2018-36-1-8-14] [Reference Citation Analysis]
217 Pérez-escalante E, Jaimez-ordaz J, Castañeda-ovando A, Contreras-lópez E, Añorve-morga J, González-olivares LG. Antithrombotic Activity of Milk Protein Hydrolysates by Lactic Acid Bacteria Isolated from Commercial Fermented Milks. Braz arch biol technol 2018;61:e18180132. [DOI: 10.1590/1678-4324-2018180132] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.2] [Reference Citation Analysis]
218 Iwaniak A, Darewicz M, Minkiewicz P. Peptides Derived from Foods as Supportive Diet Components in the Prevention of Metabolic Syndrome. Compr Rev Food Sci Food Saf 2018;17:63-81. [PMID: 33350059 DOI: 10.1111/1541-4337.12321] [Cited by in Crossref: 29] [Cited by in F6Publishing: 30] [Article Influence: 4.8] [Reference Citation Analysis]