BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Poznyak AV, Wu WK, Melnichenko AA, Wetzker R, Sukhorukov V, Markin AM, Khotina VA, Orekhov AN. Signaling Pathways and Key Genes Involved in Regulation of foam Cell Formation in Atherosclerosis. Cells 2020;9:E584. [PMID: 32121535 DOI: 10.3390/cells9030584] [Cited by in Crossref: 25] [Cited by in F6Publishing: 25] [Article Influence: 12.5] [Reference Citation Analysis]
Number Citing Articles
1 Saiki P, Yoshihara M, Kawano Y, Miyazaki H, Miyazaki K. Anti-Inflammatory Effects of Heliangin from Jerusalem Artichoke (Helianthus tuberosus) Leaves Might Prevent Atherosclerosis. Biomolecules 2022;12:91. [DOI: 10.3390/biom12010091] [Reference Citation Analysis]
2 Guo W, Li XN, Li J, Lu J, Wu J, Zhu WF, Qin P, Xu NZ, Zhang Q. Increased plasma miR-146a levels are associated with subclinical atherosclerosis in newly diagnosed type 2 diabetes mellitus. J Diabetes Complications 2020;34:107725. [PMID: 32981813 DOI: 10.1016/j.jdiacomp.2020.107725] [Reference Citation Analysis]
3 Zhang K, Qin X, Zhou X, Zhou J, Wen P, Chen S, Wu M, Wu Y, Zhuang J. Analysis of genes and underlying mechanisms involved in foam cells formation and atherosclerosis development. PeerJ 2020;8:e10336. [PMID: 33240650 DOI: 10.7717/peerj.10336] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Orekhov AN, Nikiforov NN, Ivanova EA, Sobenin IA. Possible Role of Mitochondrial DNA Mutations in Chronification of Inflammation: Focus on Atherosclerosis. J Clin Med 2020;9:E978. [PMID: 32244740 DOI: 10.3390/jcm9040978] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 6.0] [Reference Citation Analysis]
5 Zhang S, Zhang S, Liang X, Huang Y, Tang L, Liu F, Xu X, Ye F, Liu J, Liu J, Yan S, Han X. Guanxinping ameliorates atherosclerosis via MAPK/NF-κB signaling pathway in ApoE −/− mice. Perfusion. [DOI: 10.1177/02676591211068311] [Reference Citation Analysis]
6 Manolis AS, Manolis AA, Manolis TA, Apostolaki NE, Apostolopoulos EJ, Melita H, Katsiki N. Mitochondrial dysfunction in cardiovascular disease: Current status of translational research/clinical and therapeutic implications. Med Res Rev 2021;41:275-313. [PMID: 32959403 DOI: 10.1002/med.21732] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
7 Lu H, Sun J, Hamblin MH, Chen YE, Fan Y. Transcription factor EB regulates cardiovascular homeostasis. EBioMedicine 2021;63:103207. [PMID: 33418500 DOI: 10.1016/j.ebiom.2020.103207] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Kirichenko TV, Markina YV, Sukhorukov VN, Khotina VA, Wu WK, Orekhov AN. A Novel Insight at Atherogenesis: The Role of Microbiome. Front Cell Dev Biol 2020;8:586189. [PMID: 33072766 DOI: 10.3389/fcell.2020.586189] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
9 Bezsonov EE, Sobenin IA, Orekhov AN. Immunopathology of Atherosclerosis and Related Diseases: Focus on Molecular Biology. Int J Mol Sci 2021;22:4080. [PMID: 33920897 DOI: 10.3390/ijms22084080] [Reference Citation Analysis]
10 Sukhorukov VN, Khotina VA, Chegodaev YS, Ivanova E, Sobenin IA, Orekhov AN. Lipid Metabolism in Macrophages: Focus on Atherosclerosis. Biomedicines 2020;8:E262. [PMID: 32752275 DOI: 10.3390/biomedicines8080262] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
11 Xu M, Zhou Y, Ren C, Liang X, Li N. Palladium Hydride Nanopocket Cubes and Their H 2 ‐Therapy Function in Amplifying Inhibition of Foam Cells to Attenuate Atherosclerosis. Adv Funct Materials 2021;31:2104892. [DOI: 10.1002/adfm.202104892] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Rho JH, Kim HJ, Joo JY, Lee JY, Lee JH, Park HR. Periodontal Pathogens Promote Foam Cell Formation by Blocking Lipid Efflux. J Dent Res 2021;:220345211008811. [PMID: 33899578 DOI: 10.1177/00220345211008811] [Reference Citation Analysis]
13 Orekhov AN, Ivanova EA, Markin AM, Nikiforov NG, Sobenin IA. Genetics of Arterial-Wall-Specific Mechanisms in Atherosclerosis: Focus on Mitochondrial Mutations. Curr Atheroscler Rep 2020;22:54. [PMID: 32772280 DOI: 10.1007/s11883-020-00873-5] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Liu X, Wu J, Tian R, Su S, Deng S, Meng X. Targeting foam cell formation and macrophage polarization in atherosclerosis: The Therapeutic potential of rhubarb. Biomed Pharmacother 2020;129:110433. [PMID: 32768936 DOI: 10.1016/j.biopha.2020.110433] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Wang F, Liang S, Hu J, Xu Y. Aryl hydrocarbon receptor connects dysregulated immune cells to atherosclerosis. Immunol Lett 2020;228:55-63. [PMID: 33053378 DOI: 10.1016/j.imlet.2020.10.003] [Reference Citation Analysis]
16 Wu M, Yu Z, Li X, Zhang X, Wang S, Yang S, Hu L, Liu L. Paeonol for the Treatment of Atherosclerotic Cardiovascular Disease: A Pharmacological and Mechanistic Overview. Front Cardiovasc Med 2021;8:690116. [PMID: 34368250 DOI: 10.3389/fcvm.2021.690116] [Reference Citation Analysis]
17 Zhang C, Zhang X, Gong Y, Li T, Yang L, Xu W, Dong L. Role of the lncRNA-mRNA network in atherosclerosis using ox-low-density lipoprotein-induced macrophage-derived foam cells. Mol Omics 2020;16:543-53. [PMID: 32915179 DOI: 10.1039/d0mo00077a] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Ma K, Gao W, Xu H, Liang W, Ma G, Anand V. Role and Mechanism of the Renin-Angiotensin-Aldosterone System in the Onset and Development of Cardiorenal Syndrome. Journal of the Renin-Angiotensin-Aldosterone System 2022;2022:1-8. [DOI: 10.1155/2022/3239057] [Reference Citation Analysis]
19 Chen D, Xi Y, Zhang S, Weng L, Dong Z, Chen C, Wu T, Xiao J. Curcumin attenuates inflammation of Macrophage-derived foam cells treated with Poly-L-lactic acid degradation via PPARγ signaling pathway. J Mater Sci Mater Med 2022;33:33. [PMID: 35303193 DOI: 10.1007/s10856-022-06654-7] [Reference Citation Analysis]
20 El Hadri K, Smith R, Duplus E, El Amri C. Inflammation, Oxidative Stress, Senescence in Atherosclerosis: Thioredoxine-1 as an Emerging Therapeutic Target. Int J Mol Sci 2021;23:77. [PMID: 35008500 DOI: 10.3390/ijms23010077] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
21 Poznyak AV, Bharadwaj D, Prasad G, Grechko AV, Sazonova MA, Orekhov AN. Renin-Angiotensin System in Pathogenesis of Atherosclerosis and Treatment of CVD. Int J Mol Sci 2021;22:6702. [PMID: 34206708 DOI: 10.3390/ijms22136702] [Reference Citation Analysis]
22 Maleki N, Khosh Ravesh R, Salehiyeh S, Faisal Faiz A, Ebrahimi M, Sharbati A, Panji M, Ajami Khiyavi H, Safizadeh F, Abbasi M, Abazari O, Norbakhsh R, Eskandari Y. Comparative effects of estrogen and silibinin on cardiovascular risk biomarkers in ovariectomized rats. Gene 2022;823:146365. [PMID: 35257789 DOI: 10.1016/j.gene.2022.146365] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Qian C, Xia M, Yang X, Chen P, Ye Q. Long Noncoding RNAs in the Progression of Atherosclerosis: An Integrated Analysis Based on Competing Endogenous RNA Theory. DNA Cell Biol 2021;40:283-92. [PMID: 33332208 DOI: 10.1089/dna.2020.6106] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
24 Chen W, Zhang S, Wu J, Ye T, Wang S, Wang P, Xing D. Butyrate-producing bacteria and the gut-heart axis in atherosclerosis. Clin Chim Acta 2020;507:236-41. [PMID: 32376324 DOI: 10.1016/j.cca.2020.04.037] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
25 Malekmohammad K, Bezsonov EE, Rafieian-Kopaei M. Role of Lipid Accumulation and Inflammation in Atherosclerosis: Focus on Molecular and Cellular Mechanisms. Front Cardiovasc Med 2021;8:707529. [PMID: 34552965 DOI: 10.3389/fcvm.2021.707529] [Reference Citation Analysis]
26 Aghamajidi A, Gorgani M, Shahba F, Shafaghat Z, Mojtabavi N. The potential targets in immunotherapy of atherosclerosis. Int Rev Immunol 2021;:1-18. [PMID: 34779341 DOI: 10.1080/08830185.2021.1988591] [Reference Citation Analysis]
27 Sun L, Gai J, Shi S, Zhao J, Bai X, Liu B, Li X. Protease-Activated Receptor 2 (PAR-2) Antagonist AZ3451 Mitigates Oxidized Low-Density Lipoprotein (Ox-LDL)-Induced Damage and Endothelial Inflammation. Chem Res Toxicol 2021;34:2202-8. [PMID: 34590836 DOI: 10.1021/acs.chemrestox.1c00154] [Reference Citation Analysis]
28 Gori T. Exogenous NO Therapy for the Treatment and Prevention of Atherosclerosis. Int J Mol Sci 2020;21:E2703. [PMID: 32295055 DOI: 10.3390/ijms21082703] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
29 Zhong T, Li Y, He X, Liu Y, Dong Y, Ma H, Zheng Z, Zhang Y. Adaptation of endothelial cells to shear stress under atheroprone conditions by modulating internalization of vascular endothelial cadherin and vinculin. Ann Transl Med 2020;8:1423. [PMID: 33313168 DOI: 10.21037/atm-20-3426] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
30 Qin X, He W, Yang R, Liu L, Zhang Y, Li L, Si J, Li X, Ma K. Inhibition of Connexin 43 reverses ox-LDL-mediated inhibition of autophagy in VSMC by inhibiting the PI3K/Akt/mTOR signaling pathway. PeerJ 2022;10:e12969. [DOI: 10.7717/peerj.12969] [Reference Citation Analysis]
31 Dos Santos MM, de Souza Prestes A, de Macedo GT, Ferreira SA, Souza Vargas JL, Schüler LC, de Bem AF, de Vargas Barbosa N. Syzygium cumini leaf extract protects macrophages against the oxidized LDL-induced toxicity: A promising atheroprotective effect. Biomed Pharmacother 2021;142:111196. [PMID: 34210581 DOI: 10.1016/j.biopha.2020.111196] [Reference Citation Analysis]
32 Shan R, Liu N, Yan Y, Liu B. Apoptosis, autophagy and atherosclerosis: Relationships and the role of Hsp27. Pharmacol Res 2021;166:105169. [PMID: 33053445 DOI: 10.1016/j.phrs.2020.105169] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
33 Cai XY, Shao L, Zhu HM, Zhan YL, Wang YX, Tu WL, Hong L, Wang S. WITHDRAWN: Circ_0001946 facilitates the proliferation and represses apoptosis of ox-LDL-stimulated Vascular Smooth Muscle Cells via regulating miR-641/CCND1 pathway. Gene 2020;:144953. [PMID: 32683082 DOI: 10.1016/j.gene.2020.144953] [Reference Citation Analysis]
34 Wu X, Wang Y, Ren Z, Li L, Qian W, Chen Y, Ren W. Association between Growth Differentiation Factor-15 and Risk of Cardiovascular Diseases in Patients with Adult Growth Hormone Deficiency. Int J Endocrinol 2021;2021:5921863. [PMID: 34394348 DOI: 10.1155/2021/5921863] [Reference Citation Analysis]