BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Tang BL. The Expanding Therapeutic Potential of Neuronal KCC2. Cells 2020;9:E240. [PMID: 31963584 DOI: 10.3390/cells9010240] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 5.7] [Reference Citation Analysis]
Number Citing Articles
1 Pressey JC, de Saint-Rome M, Raveendran VA, Woodin MA. Chloride transporters controlling neuronal excitability. Physiol Rev 2023;103:1095-135. [PMID: 36302178 DOI: 10.1152/physrev.00025.2021] [Reference Citation Analysis]
2 Hauser KF, Ohene-Nyako M, Knapp PE. Accelerated brain aging with opioid misuse and HIV: New insights on the role of glially derived pro-inflammation mediators and neuronal chloride homeostasis. Curr Opin Neurobiol 2023;78:102653. [PMID: 36584655 DOI: 10.1016/j.conb.2022.102653] [Reference Citation Analysis]
3 Sandoval A, He Z, Chen B. Propriospinal neurons as relay pathways from brain to spinal cord. Spinal Interneurons 2023. [DOI: 10.1016/b978-0-12-819260-3.00013-5] [Reference Citation Analysis]
4 Talifu Z, Pan Y, Gong H, Xu X, Zhang C, Yang D, Gao F, Yu Y, Du L, Li J. The role of KCC2 and NKCC1 in spinal cord injury: From physiology to pathology. Front Physiol 2022;13:1045520. [PMID: 36589461 DOI: 10.3389/fphys.2022.1045520] [Reference Citation Analysis]
5 Litwa K. Shared mechanisms of neural circuit disruption in tuberous sclerosis across lifespan: Bridging neurodevelopmental and neurodegenerative pathology. Front Genet 2022;13:997461. [PMID: 36506334 DOI: 10.3389/fgene.2022.997461] [Reference Citation Analysis]
6 Hudson KE, Grau JW. Ionic Plasticity: Common Mechanistic Underpinnings of Pathology in Spinal Cord Injury and the Brain. Cells 2022;11:2910. [PMID: 36139484 DOI: 10.3390/cells11182910] [Reference Citation Analysis]
7 Bhagwani A, Chopra M, Kumar H. Spinal Cord Injury Provoked Neuropathic Pain and Spasticity, and Their GABAergic Connection. Neurospine 2022;19:646-68. [PMID: 36203291 DOI: 10.14245/ns.2244368.184] [Reference Citation Analysis]
8 Barbato C, Frisone P, Braccini L, D’aguanno S, Pieroni L, Ciotti MT, Catalanotto C, Cogoni C, Ruberti F. Silencing of Ago-2 Interacting Protein SERBP1 Relieves KCC2 Repression by miR-92 in Neurons. Cells 2022;11:1052. [DOI: 10.3390/cells11061052] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
9 Serranilla M, Woodin MA. Striatal Chloride Dysregulation and Impaired GABAergic Signaling Due to Cation-Chloride Cotransporter Dysfunction in Huntington’s Disease. Front Cell Neurosci 2022;15:817013. [DOI: 10.3389/fncel.2021.817013] [Reference Citation Analysis]
10 Gao Y, Zhan W, Jin Y, Chen X, Cai J, Zhou X, Huang X, Zhao Q, Wang W, Sun J. KCC2 receptor upregulation potentiates antinociceptive effect of GABAAR agonist on remifentanil-induced hyperalgesia. Mol Pain 2022;18:17448069221082880. [PMID: 35352582 DOI: 10.1177/17448069221082880] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Chen YF, Shen MR. The Important Role of Ion Transport System in Cervical Cancer. Int J Mol Sci 2021;23:333. [PMID: 35008759 DOI: 10.3390/ijms23010333] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Hamze M, Medina I, Delmotte Q, Porcher C. Contribution of Smoothened Receptor Signaling in GABAergic Neurotransmission and Chloride Homeostasis in the Developing Rodent Brain. Front Physiol 2021;12:798066. [PMID: 34955901 DOI: 10.3389/fphys.2021.798066] [Reference Citation Analysis]
13 Thorsdottir D, Einwag Z, Erdos B. BDNF shifts excitatory-inhibitory balance in the paraventricular nucleus of the hypothalamus to elevate blood pressure. J Neurophysiol 2021;126:1209-20. [PMID: 34406887 DOI: 10.1152/jn.00247.2021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Ditsiou A, Gagliano T, Samuels M, Vella V, Tolias C, Giamas G. The multifaceted role of lemur tyrosine kinase 3 in health and disease. Open Biol 2021;11:210218. [PMID: 34582708 DOI: 10.1098/rsob.210218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Scher MS. "The First Thousand Days" Define a Fetal/Neonatal Neurology Program. Front Pediatr 2021;9:683138. [PMID: 34408995 DOI: 10.3389/fped.2021.683138] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
16 Mayadali ÜS, Fleuriet J, Mustari M, Straka H, Horn AKE. Transmitter and ion channel profiles of neurons in the primate abducens and trochlear nuclei. Brain Struct Funct 2021;226:2125-51. [PMID: 34181058 DOI: 10.1007/s00429-021-02315-7] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
17 Stepankova K, Jendelova P, Machova Urdzikova L. Planet of the AAVs: The Spinal Cord Injury Episode. Biomedicines 2021;9:613. [PMID: 34071245 DOI: 10.3390/biomedicines9060613] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
18 Virtanen MA, Uvarov P, Mavrovic M, Poncer JC, Kaila K. The Multifaceted Roles of KCC2 in Cortical Development. Trends Neurosci 2021;44:378-92. [PMID: 33640193 DOI: 10.1016/j.tins.2021.01.004] [Cited by in Crossref: 26] [Cited by in F6Publishing: 28] [Article Influence: 13.0] [Reference Citation Analysis]
19 Andrews K, Josiah SS, Zhang J. The Therapeutic Potential of Neuronal K-Cl Co-Transporter KCC2 in Huntington's Disease and Its Comorbidities. Int J Mol Sci 2020;21:E9142. [PMID: 33266310 DOI: 10.3390/ijms21239142] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]