1 |
You Y, Zhu K, Wang J, Liang Q, Li W, Wang L, Guo B, Zhou J, Feng X, Shi J. ROCK inhibitor: Focus on recent updates. Chinese Chemical Letters 2023. [DOI: 10.1016/j.cclet.2023.108336] [Reference Citation Analysis]
|
2 |
Crnkovic S, Rittchen S, Jandl K, Gindlhuber J, Zabini D, Mutgan AC, Valzano F, Boehm PM, Hoetzenecker K, Toller W, Veith C, Heinemann A, Schermuly RT, Olschewski A, Marsh LM, Kwapiszewska G. Divergent Roles of Ephrin-B2/EphB4 Guidance System in Pulmonary Hypertension. Hypertension 2023;80:e17-28. [PMID: 36519465 DOI: 10.1161/HYPERTENSIONAHA.122.19479] [Reference Citation Analysis]
|
3 |
Nahar J, Boopathi V, Murugesan M, Rupa EJ, Yang DC, Kang SC, Mathiyalagan R. Investigating the Anticancer Activity of G-Rh1 Using In Silico and In Vitro Studies (A549 Lung Cancer Cells). Molecules 2022;27. [PMID: 36500403 DOI: 10.3390/molecules27238311] [Reference Citation Analysis]
|
4 |
Hayes G, Pinto J, Sparks SN, Wang C, Suri S, Bulte DP. Vascular smooth muscle cell dysfunction in neurodegeneration. Front Neurosci 2022;16. [DOI: 10.3389/fnins.2022.1010164] [Reference Citation Analysis]
|
5 |
Millar MW, Fazal F, Rahman A. Therapeutic Targeting of NF-κB in Acute Lung Injury: A Double-Edged Sword. Cells 2022;11. [PMID: 36291185 DOI: 10.3390/cells11203317] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
|
6 |
Sawma T, Shaito A, Najm N, Sidani M, Orekhov A, El-yazbi AF, Iratni R, Eid AH. Role of RhoA and Rho-associated kinase in phenotypic switching of vascular smooth muscle cells: Implications for vascular function. Atherosclerosis 2022;358:12-28. [DOI: 10.1016/j.atherosclerosis.2022.08.012] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
7 |
Sui C, Wu Y, Zhang R, Zhang T, Zhang Y, Xi J, Ding Y, Wen J, Hu Y. Rutin Inhibits the Progression of Osteoarthritis Through CBS-Mediated RhoA/ROCK Signaling. DNA Cell Biol 2022. [PMID: 35588172 DOI: 10.1089/dna.2021.1182] [Reference Citation Analysis]
|
8 |
Dhoble S, Patravale V, Weaver E, Lamprou DA, Patravale T. Comprehensive Review on Novel Targets and Emerging Therapeutic Modalities for Pulmonary Arterial Hypertension. Int J Pharm 2022;:121792. [PMID: 35513217 DOI: 10.1016/j.ijpharm.2022.121792] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
|
9 |
Thomas S, Manivannan S, Garg V, Lilly B. Single-Cell RNA Sequencing Reveals Novel Genes Regulated by Hypoxia in the Lung Vasculature. J Vasc Res 2022;59:163-75. [PMID: 35294950 DOI: 10.1159/000522340] [Reference Citation Analysis]
|
10 |
Shoji H, Yoshida Y, Sanada TJ, Naito A, Maruyama J, Zhang E, Sumi K, Sakao S, Maruyama K, Hidaka H, Tatsumi K. The Isoquinoline-Sulfonamide Compound H-1337 Attenuates SU5416/Hypoxia-Induced Pulmonary Arterial Hypertension in Rats. Cells 2021;11:66. [PMID: 35011628 DOI: 10.3390/cells11010066] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
11 |
Wang T, Duan Y, Liu D, Li G, Liu B. The effect of transglutaminase-2 inhibitor on pulmonary vascular remodeling in rats with pulmonary arterial hypertension. Clin Exp Hypertens 2021;:1-8. [PMID: 34889160 DOI: 10.1080/10641963.2021.2013493] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|
12 |
Yang Q, Hori M. Characterization of Contractile Machinery of Vascular Smooth Muscles in Hypertension. Life (Basel) 2021;11:702. [PMID: 34357074 DOI: 10.3390/life11070702] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
|