BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pellegrino M, Del Bufalo F, De Angelis B, Quintarelli C, Caruana I, de Billy E. Manipulating the Metabolism to Improve the Efficacy of CAR T-Cell Immunotherapy. Cells 2020;10:E14. [PMID: 33374128 DOI: 10.3390/cells10010014] [Cited by in Crossref: 18] [Cited by in F6Publishing: 21] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Yu H, Jacquelot N, Belz GT. Metabolic features of innate lymphoid cells. J Exp Med 2022;219:e20221140. [PMID: 36301303 DOI: 10.1084/jem.20221140] [Reference Citation Analysis]
2 Abraham-miranda J, Menges M, Atkins R, Mattie M, Kanska J, Turner J, Hidalgo-vargas MJ, Locke FL. CAR-T manufactured from frozen PBMC yield efficient function with prolonged in vitro production. Front Immunol 2022;13:1007042. [DOI: 10.3389/fimmu.2022.1007042] [Reference Citation Analysis]
3 Atilla PA, Atilla E. Resistance against anti-CD19 and anti-BCMA CAR T cells: Recent advances and coping strategies. Transl Oncol 2022;22:101459. [PMID: 35617812 DOI: 10.1016/j.tranon.2022.101459] [Reference Citation Analysis]
4 Hickman TL, Choi E, Whiteman KR, Muralidharan S, Pai T, Johnson T, Parikh A, Friedman T, Gilbert M, Shen B, Barron L, McGinness KE, Ettenberg SA, Motz GT, Weiss GJ, Jensen-Smith A. BOXR1030, an anti-GPC3 CAR with exogenous GOT2 expression, shows enhanced T cell metabolism and improved anti-cell line derived tumor xenograft activity. PLoS One 2022;17:e0266980. [PMID: 35507536 DOI: 10.1371/journal.pone.0266980] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
5 Kazmi S, Khan MA, Shamma T, Altuhami A, Assiri AM, Broering DC. Therapeutic nexus of T cell immunometabolism in improving transplantation immunotherapy. International Immunopharmacology 2022;106:108621. [DOI: 10.1016/j.intimp.2022.108621] [Reference Citation Analysis]
6 Forcados C, Joaquina S, Casey NP, Caulier B, Wälchli S. How CAR T Cells Breathe. Cells 2022;11:1454. [PMID: 35563759 DOI: 10.3390/cells11091454] [Reference Citation Analysis]
7 Granhøj JS, Witness Præst Jensen A, Presti M, Met Ö, Svane IM, Donia M. Tumor-infiltrating lymphocytes for adoptive cell therapy: recent advances, challenges, and future directions. Expert Opin Biol Ther 2022. [PMID: 35414331 DOI: 10.1080/14712598.2022.2064711] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Pan K, Farrukh H, Chittepu VCSR, Xu H, Pan CX, Zhu Z. CAR race to cancer immunotherapy: from CAR T, CAR NK to CAR macrophage therapy. J Exp Clin Cancer Res 2022;41:119. [PMID: 35361234 DOI: 10.1186/s13046-022-02327-z] [Cited by in Crossref: 9] [Cited by in F6Publishing: 12] [Article Influence: 9.0] [Reference Citation Analysis]
9 Kim GB, Riley JL, Levine BL. Engineering T cells to survive and thrive in the hostile tumor microenvironment. Current Opinion in Biomedical Engineering 2022;21:100360. [DOI: 10.1016/j.cobme.2021.100360] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
10 Fujiwara Y, Kato T, Hasegawa F, Sunahara M, Tsurumaki Y. The Past, Present, and Future of Clinically Applied Chimeric Antigen Receptor-T-Cell Therapy. Pharmaceuticals 2022;15:207. [DOI: 10.3390/ph15020207] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Buechner J, Caruana I, Künkele A, Rives S, Vettenranta K, Bader P, Peters C, Baruchel A, Calkoen FG. Chimeric Antigen Receptor T-Cell Therapy in Paediatric B-Cell Precursor Acute Lymphoblastic Leukaemia: Curative Treatment Option or Bridge to Transplant? Front Pediatr 2022;9:784024. [DOI: 10.3389/fped.2021.784024] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
12 Corrado M, Pearce EL. Targeting memory T cell metabolism to improve immunity. J Clin Invest 2022;132:e148546. [PMID: 34981777 DOI: 10.1172/JCI148546] [Cited by in Crossref: 6] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
13 Mirzaee Godarzee M, Mahmud Hussen B, Razmara E, Hakak‐zargar B, Mohajerani F, Dabiri H, Fatih Rasul M, Ghazimoradi MH, Babashah S, Sadeghizadeh M. Strategies to overcome the side effects of chimeric antigen receptor T cell therapy. Annals NY Academy of Science. [DOI: 10.1111/nyas.14724] [Reference Citation Analysis]
14 He R, Lao Y, Yu W, Zhang X, Jiang M, Zhu C. Progress in the Application of Immune Checkpoint Inhibitor-Based Immunotherapy for Targeting Different Types of Colorectal Cancer. Front Oncol 2021;11:764618. [PMID: 34888243 DOI: 10.3389/fonc.2021.764618] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 6.0] [Reference Citation Analysis]
15 Hickman TL, Choi E, Whiteman KR, Muralidharan S, Pai T, Johnson T, Parikh A, Friedman T, Gilbert M, Shen B, Barron L, Mcginness KE, Ettenberg SA, Motz GT, Weiss GJ, Jensen-smith A. BOXR1030, an anti-GPC3 CAR with exogenous GOT2 expression, shows enhanced T cell metabolism and improved antitumor activity.. [DOI: 10.1101/2021.11.17.469041] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
16 Xiao BF, Zhang JT, Zhu YG, Cui XR, Lu ZM, Yu BT, Wu N. Chimeric Antigen Receptor T-Cell Therapy in Lung Cancer: Potential and Challenges. Front Immunol 2021;12:782775. [PMID: 34790207 DOI: 10.3389/fimmu.2021.782775] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
17 Ma C, Martinez-Rodriguez V, Hoffmann PR. Roles for Selenoprotein I and Ethanolamine Phospholipid Synthesis in T Cell Activation. Int J Mol Sci 2021;22:11174. [PMID: 34681834 DOI: 10.3390/ijms222011174] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
18 Akbari B, Ghahri-Saremi N, Soltantoyeh T, Hadjati J, Ghassemi S, Mirzaei HR. Epigenetic strategies to boost CAR T cell therapy. Mol Ther 2021;29:2640-59. [PMID: 34365035 DOI: 10.1016/j.ymthe.2021.08.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
19 Zimmermannova O, Caiado I, Ferreira AG, Pereira CF. Cell Fate Reprogramming in the Era of Cancer Immunotherapy. Front Immunol 2021;12:714822. [PMID: 34367185 DOI: 10.3389/fimmu.2021.714822] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 6.0] [Reference Citation Analysis]
20 Chiaradonna F, Scumaci D. Cancer Metabolism as a New Real Target in Tumor Therapy. Cells 2021;10:1393. [PMID: 34198722 DOI: 10.3390/cells10061393] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
21 Di Ianni N, Musio S, Pellegatta S. Altered Metabolism in Glioblastoma: Myeloid-Derived Suppressor Cell (MDSC) Fitness and Tumor-Infiltrating Lymphocyte (TIL) Dysfunction. Int J Mol Sci 2021;22:4460. [PMID: 33923299 DOI: 10.3390/ijms22094460] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
22 Kozani PS, Kozani PS, O'Connor RS. Humanized Chimeric Antigen Receptor (CAR) T cells. J Cancer Immunol (Wilmington) 2021;3:183-7. [PMID: 35128536] [Reference Citation Analysis]