BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Beyoğlu D, Idle JR. Metabolic Rewiring and the Characterization of Oncometabolites. Cancers (Basel) 2021;13:2900. [PMID: 34200553 DOI: 10.3390/cancers13122900] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
Number Citing Articles
1 Pieri V, Gallotti AL, Drago D, Cominelli M, Pagano I, Conti V, Valtorta S, Coliva A, Lago S, Michelatti D, Massimino L, Ungaro F, Perani L, Spinelli A, Castellano A, Falini A, Zippo A, Poliani PL, Moresco RM, Andolfo A, Galli R. Aberrant L-Fucose Accumulation and Increased Core Fucosylation Are Metabolic Liabilities in Mesenchymal Glioblastoma. Cancer Res 2023;83:195-218. [PMID: 36409826 DOI: 10.1158/0008-5472.CAN-22-0677] [Reference Citation Analysis]
2 Ganesan R, Yoon SJ, Suk KT. Microbiome and Metabolomics in Liver Cancer: Scientific Technology. Int J Mol Sci 2022;24. [PMID: 36613980 DOI: 10.3390/ijms24010537] [Reference Citation Analysis]
3 Tucker JD, Doddapaneni R, Lu PJ, Lu QL. Ribitol alters multiple metabolic pathways of central carbon metabolism with enhanced glycolysis: A metabolomics and transcriptomics profiling of breast cancer. PLoS One 2022;17:e0278711. [PMID: 36477459 DOI: 10.1371/journal.pone.0278711] [Reference Citation Analysis]
4 Fontanellas A, Avila MA. Hydroxymethylbilane synthase (aka porphobilinogen deaminase): A novel metabolic tumor suppressor gene in hepatocellular carcinoma. J Hepatol 2022;77:912-4. [PMID: 35798130 DOI: 10.1016/j.jhep.2022.06.023] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Beyoğlu D, Idle JR. The gut microbiota - a vehicle for the prevention and treatment of hepatocellular carcinoma. Biochem Pharmacol 2022;:115225. [PMID: 35998677 DOI: 10.1016/j.bcp.2022.115225] [Reference Citation Analysis]
6 Mameri H, Buhagiar-Labarchède G, Fontaine G, Corcelle C, Barette C, Onclercq-Delic R, Beauvineau C, Mahuteau-Betzer F, Amor-Guéret M. Cytidine deaminase deficiency in tumor cells is associated with sensitivity to a naphthol derivative and a decrease in oncometabolite levels. Cell Mol Life Sci 2022;79:465. [PMID: 35925417 DOI: 10.1007/s00018-022-04487-9] [Reference Citation Analysis]
7 Chu SS, Nguyen HA, Zhang J, Tabassum S, Cao H. Towards Multiplexed and Multimodal Biosensor Platforms in Real-Time Monitoring of Metabolic Disorders. Sensors 2022;22:5200. [DOI: 10.3390/s22145200] [Reference Citation Analysis]
8 Beyoğlu D, Simillion C, Storni F, De Gottardi A, Idle JR. A Metabolomic Analysis of Cirrhotic Ascites. Molecules 2022;27:3935. [PMID: 35745058 DOI: 10.3390/molecules27123935] [Reference Citation Analysis]
9 Resurreccion EP, Fong K. The Integration of Metabolomics with Other Omics: Insights into Understanding Prostate Cancer. Metabolites 2022;12:488. [DOI: 10.3390/metabo12060488] [Reference Citation Analysis]
10 Janker L, Schuster D, Bortel P, Hagn G, Brunmair J, Meier-menches SM, Mader JC, Slany A, Bileck A, Madl C, Unger L, Hennlich B, Weitmayr B, Del Favero G, Pils D, Pukrop T, Pfisterer N, Feichtenschlager T, Gerner C. Multi-omics empowered deep phenotyping of ulcerative colitis.. [DOI: 10.1101/2022.05.25.22275502] [Reference Citation Analysis]
11 Ippolito L, Sonveaux P, Chiarugi P. Unconventional roles of lactate along the tumor and immune landscape. Trends in Endocrinology & Metabolism 2022;33:231-235. [DOI: 10.1016/j.tem.2022.01.005] [Reference Citation Analysis]
12 Sebestyén A, Dankó T, Sztankovics D, Moldvai D, Raffay R, Cervi C, Krencz I, Zsiros V, Jeney A, Petővári G. The role of metabolic ecosystem in cancer progression — metabolic plasticity and mTOR hyperactivity in tumor tissues. Cancer Metastasis Rev. [DOI: 10.1007/s10555-021-10006-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
13 Harmati M, Bukva M, Böröczky T, Buzás K, Gyukity-Sebestyén E. The role of the metabolite cargo of extracellular vesicles in tumor progression. Cancer Metastasis Rev 2021. [PMID: 34957539 DOI: 10.1007/s10555-021-10014-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
14 Iessi E, Vona R, Cittadini C, Matarrese P. Targeting the Interplay between Cancer Metabolic Reprogramming and Cell Death Pathways as a Viable Therapeutic Path. Biomedicines 2021;9:1942. [PMID: 34944758 DOI: 10.3390/biomedicines9121942] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Cioce M, Canino C, Pass H, Blandino G, Strano S, Fazio VM. Arachidonic acid drives adaptive responses to chemotherapy-induced stress in malignant mesothelioma. J Exp Clin Cancer Res 2021;40:344. [PMID: 34727953 DOI: 10.1186/s13046-021-02118-y] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
16 Luczak MW, Krawic C, Zhitkovich A. NAD+ metabolism controls growth inhibition by HIF1 in normoxia and determines differential sensitivity of normal and cancer cells. Cell Cycle 2021;:1-16. [PMID: 34382917 DOI: 10.1080/15384101.2021.1959988] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]