1 |
Yu Z, Zhou Y, Li Y, Dong Z. Integration of clinical and spatial data to explore lipid metabolism-related genes for predicting prognosis and immune microenvironment in gliomas. Funct Integr Genomics 2023;23:82. [PMID: 36929451 DOI: 10.1007/s10142-023-01010-6] [Reference Citation Analysis]
|
2 |
Liu A, Aboud O, Dahabiyeh LA, Bloch O, Fiehn O. A pilot study on metabolomic characterization of human glioblastomas and patient plasma. Res Sq 2023:rs. [PMID: 36945517 DOI: 10.21203/rs.3.rs-2662020/v1] [Reference Citation Analysis]
|
3 |
Milchram L, Kulovics R, Sonntagbauer M, Schönthaler S, Vierlinger K, Dorfer C, Cameron C, Saydam O, Weinhäusel A. Antibody Profiling and In Silico Functional Analysis of Differentially Reactive Antibody Signatures of Glioblastomas and Meningiomas. Int J Mol Sci 2023;24. [PMID: 36674927 DOI: 10.3390/ijms24021411] [Reference Citation Analysis]
|
4 |
Miska J, Chandel NS. Targeting fatty acid metabolism in glioblastoma. J Clin Invest 2023;133. [PMID: 36594473 DOI: 10.1172/JCI163448] [Reference Citation Analysis]
|
5 |
Liu X, Zhao Z, Sun X, Wang J, Yi W, Wang D, Li Y. Blocking Cholesterol Metabolism with Tumor‐Penetrable Nanovesicles to Improve Photodynamic Cancer Immunotherapy. Small Methods 2022. [DOI: 10.1002/smtd.202200898] [Reference Citation Analysis]
|