1 |
Wu-wu JWF, Guadamuz-mayorga C, Oviedo-cerdas D, Zamora WJ. Antibiotic Resistance and Food Safety: Perspectives on New Technologies and Molecules for Microbial Control in the Food Industry. Antibiotics 2023;12:550. [DOI: 10.3390/antibiotics12030550] [Reference Citation Analysis]
|
2 |
Ladewig L, Gloy L, Langfeldt D, Pinnow N, Weiland-bräuer N, Schmitz RA. Antimicrobial peptides originating from expression libraries ofAurelia auritaandMnemiopsis leidyiprevent biofilm formation of opportunistic pathogens.. [DOI: 10.1101/2023.03.02.530746] [Reference Citation Analysis]
|
3 |
Ismail H, Ibrahim D, El Sayed S, Wahdan A, El-Tarabili RM, Rizk El-Ghareeb W, Abdullah Alhawas B, Alahmad BAY, Abdel-Raheem SM, El-Hamid MIA. Prospective Application of Nanoencapsulated Bacillus amyloliquefaciens on Broiler Chickens' Performance and Gut Health with Efficacy against Campylobacter jejuni Colonization. Animals (Basel) 2023;13. [PMID: 36899631 DOI: 10.3390/ani13050775] [Reference Citation Analysis]
|
4 |
Golonka I, Greber KE, Szyja BM, Petrus PP, Pucułek JE, Musiał W. Effect of Newly Synthesized Structures of Peptides on the Stability of the Monolayers Formed. Int J Mol Sci 2023;24. [PMID: 36901749 DOI: 10.3390/ijms24054318] [Reference Citation Analysis]
|
5 |
Bellotti D, D'Accolti M, Pula W, Huang N, Simeliere F, Caselli E, Esposito E, Remelli M. Calcitermin-Loaded Smart Gels Activity against Candida albicans: A Preliminary In Vitro Study. Gels 2023;9. [PMID: 36826335 DOI: 10.3390/gels9020165] [Reference Citation Analysis]
|
6 |
Singh P. Synthesis of adenine-based cationic and anionic amphiphiles. Chem Pap 2023. [DOI: 10.1007/s11696-023-02705-7] [Reference Citation Analysis]
|
7 |
Makowska M, Kosikowska-Adamus P, Zdrowowicz M, Wyrzykowski D, Prahl A, Sikorska E. Lipidation of Naturally Occurring α-Helical Antimicrobial Peptides as a Promising Strategy for Drug Design. Int J Mol Sci 2023;24. [PMID: 36835362 DOI: 10.3390/ijms24043951] [Reference Citation Analysis]
|
8 |
Kashnik AS, Syryamina VN, Biondi B, Peggion C, Formaggio F, Dzuba SA. DEER/PELDOR Study of the Effect of Extremely Low Concentrations of the Antimicrobial Peptide Chalciporin A on the Membrane Lipid Organization. Appl Magn Reson 2023. [DOI: 10.1007/s00723-023-01526-x] [Reference Citation Analysis]
|
9 |
Escobar V, Scaramozzino N, Vidic J, Buhot A, Mathey R, Chaix C, Hou Y. Recent Advances on Peptide-Based Biosensors and Electronic Noses for Foodborne Pathogen Detection. Biosensors (Basel) 2023;13. [PMID: 36832024 DOI: 10.3390/bios13020258] [Reference Citation Analysis]
|
10 |
Naiel MA, Ghazanfar S, Negm SS, Shukry M, Abdel-latif HM. Applications of antimicrobial peptides (AMPs) as an alternative to antibiotic use in aquaculture: a mini-review. Annals of Animal Science 2023;0. [DOI: 10.2478/aoas-2022-0090] [Reference Citation Analysis]
|
11 |
Kotynia A, Marciniak A, Kamysz W, Neubauer D, Krzyżak E. Interaction of Positively Charged Oligopeptides with Blood Plasma Proteins. Int J Mol Sci 2023;24. [PMID: 36769160 DOI: 10.3390/ijms24032836] [Reference Citation Analysis]
|
12 |
Aloke C, Achilonu I. Coping with the ESKAPE pathogens: Evolving strategies, challenges and future prospects. Microb Pathog 2023;175:105963. [PMID: 36584930 DOI: 10.1016/j.micpath.2022.105963] [Reference Citation Analysis]
|
13 |
Al-Talib H, Abdulwahab MH, Murad K, Amiruddin ND, Mohamed NN. Antimicrobial Effects of Tetraspanin CD9 Peptide against Microbiota Causing Armpit Malodour. Antibiotics (Basel) 2023;12. [PMID: 36830182 DOI: 10.3390/antibiotics12020271] [Reference Citation Analysis]
|
14 |
Ramzah NHHL, Yenn TW, Lee W, Loo C, Tan W, Ring LC. Antimicrobial Peptides, An Alternative Antimicrobial Agent Against Multi-drug-Resistant Microbes: Source, Application, and Potential. Advanced Structured Materials 2023. [DOI: 10.1007/978-3-031-21959-7_17] [Reference Citation Analysis]
|
15 |
Marjanovic-Painter B, Kleynhans J, Zeevaart JR, Rohwer E, Ebenhan T. A decade of ubiquicidin development for PET imaging of infection: A systematic review. Nucl Med Biol 2023;116-117:108307. [PMID: 36435145 DOI: 10.1016/j.nucmedbio.2022.11.001] [Reference Citation Analysis]
|
16 |
Pandey P, Meher K, Falcao B, Lopus M, Sirisha VL. Tryptone-stabilized silver nanoparticles' potential to mitigate planktonic and biofilm growth forms of Serratia marcescens. J Biol Inorg Chem 2023;28:139-52. [PMID: 36484825 DOI: 10.1007/s00775-022-01977-w] [Reference Citation Analysis]
|
17 |
Mba IE, Nweze EI. Antimicrobial Peptides Therapy: An Emerging Alternative for Treating Drug-Resistant Bacteria. Yale J Biol Med 2022;95:445-63. [PMID: 36568838] [Reference Citation Analysis]
|
18 |
Kao CC, Lin TL, Lin CJ, Tseng TS. Deciphering Structure-Function Relationship Unveils Salt-Resistant Mode of Action of a Potent MRSA-Inhibiting Antimicrobial Peptide, RR14. J Bacteriol 2022;204:e0031222. [PMID: 36377870 DOI: 10.1128/jb.00312-22] [Reference Citation Analysis]
|
19 |
Elbehiry A, Marzouk E, Abalkhail A, El-Garawany Y, Anagreyyah S, Alnafea Y, Almuzaini AM, Alwarhi W, Rawway M, Draz A. The Development of Technology to Prevent, Diagnose, and Manage Antimicrobial Resistance in Healthcare-Associated Infections. Vaccines (Basel) 2022;10. [PMID: 36560510 DOI: 10.3390/vaccines10122100] [Reference Citation Analysis]
|
20 |
Akshaya S, Rowlo PK, Dukle A, Nathanael AJ. Antibacterial Coatings for Titanium Implants: Recent Trends and Future Perspectives. Antibiotics (Basel) 2022;11. [PMID: 36551376 DOI: 10.3390/antibiotics11121719] [Reference Citation Analysis]
|
21 |
Richter A, Sutherland D, Ebrahimikondori H, Babcock A, Louie N, Li C, Coombe L, Lin D, Warren RL, Yanai A, Kotkoff M, Helbing CC, Hof F, Hoang LMN, Birol I. Associating Biological Activity and Predicted Structure of Antimicrobial Peptides from Amphibians and Insects. Antibiotics (Basel) 2022;11. [PMID: 36551368 DOI: 10.3390/antibiotics11121710] [Reference Citation Analysis]
|
22 |
Seshadri R, Roux S, Huber KJ, Wu D, Yu S, Udwary D, Call L, Nayfach S, Hahnke RL, Pukall R, White JR, Varghese NJ, Webb C, Palaniappan K, Reimer LC, Sardà J, Bertsch J, Mukherjee S, Reddy TBK, Hajek PP, Huntemann M, Chen IA, Spunde A, Clum A, Shapiro N, Wu ZY, Zhao Z, Zhou Y, Evtushenko L, Thijs S, Stevens V, Eloe-Fadrosh EA, Mouncey NJ, Yoshikuni Y, Whitman WB, Klenk HP, Woyke T, Göker M, Kyrpides NC, Ivanova NN. Expanding the genomic encyclopedia of Actinobacteria with 824 isolate reference genomes. Cell Genom 2022;2:100213. [PMID: 36778052 DOI: 10.1016/j.xgen.2022.100213] [Reference Citation Analysis]
|
23 |
Pang Y, Yao L, Xu J, Wang Z, Lee TY. Integrating transformer and imbalanced multi-label learning to identify antimicrobial peptides and their functional activities. Bioinformatics 2022;38:5368-74. [PMID: 36326438 DOI: 10.1093/bioinformatics/btac711] [Reference Citation Analysis]
|
24 |
Zhang OL, Niu JY, Yin IX, Yu OY, Mei ML, Chu CH. Growing Global Research Interest in Antimicrobial Peptides for Caries Management: A Bibliometric Analysis. J Funct Biomater 2022;13. [PMID: 36412851 DOI: 10.3390/jfb13040210] [Reference Citation Analysis]
|
25 |
Hongji Wang, Chaowen Zhang, Mengnan Li, Chaoran Liu, Jingyi Wang, Xuan Ou, Yuzhu Han. Antimicrobial Peptides Mediate Apoptosis by Changing Mitochondrial Membrane Permeability. Int J Mol Sci 2022;23:12732. [PMID: 36361521 DOI: 10.3390/ijms232112732] [Reference Citation Analysis]
|
26 |
Kwon J, Yang MH, Ko HJ, Kim SG, Park C, Park SC. Antimicrobial Resistance and Virulence Factors of Proteus mirabilis Isolated from Dog with Chronic Otitis Externa. Pathogens 2022;11:1215. [PMID: 36297273 DOI: 10.3390/pathogens11101215] [Reference Citation Analysis]
|
27 |
Talapko J, Meštrović T, Juzbašić M, Tomas M, Erić S, Horvat Aleksijević L, Bekić S, Schwarz D, Matić S, Neuberg M, Škrlec I. Antimicrobial Peptides-Mechanisms of Action, Antimicrobial Effects and Clinical Applications. Antibiotics (Basel) 2022;11. [PMID: 36290075 DOI: 10.3390/antibiotics11101417] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 11.0] [Reference Citation Analysis]
|
28 |
Shahraki PZ, Farrokh P. PL‐101‐WK , a novel tryptophan‐ and lysine‐rich peptide with antimicrobial activity against Staphylococcus aureus. Peptide Science. [DOI: 10.1002/pep2.24296] [Reference Citation Analysis]
|
29 |
Jadhav K, Singh R, Ray E, Singh AK, Verma RK. Taming the Devil: Antimicrobial Peptides for Safer TB Therapeutics. Curr Protein Pept Sci 2022;23:643-56. [PMID: 35619262 DOI: 10.2174/1389203723666220526161109] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
30 |
Kang SJ, Nam SH, Lee BJ. Engineering Approaches for the Development of Antimicrobial Peptide-Based Antibiotics. Antibiotics (Basel) 2022;11:1338. [PMID: 36289996 DOI: 10.3390/antibiotics11101338] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
31 |
Yu D, Wang Y, Zhang J, Yu Q, Liu S, Li M. Synthesis of the ternary nanocomposites composed of zinc 2-methylimidazolate frameworks, lactoferrin and melittin for antifungal therapy. J Mater Sci. [DOI: 10.1007/s10853-022-07672-0] [Reference Citation Analysis]
|
32 |
Liang Q, Cao L, Zhu C, Kong Q, Sun H, Zhang F, Mou H, Liu Z. Characterization of Recombinant Antimicrobial Peptide BMGlv2 Heterologously Expressed in Trichoderma reesei. IJMS 2022;23:10291. [DOI: 10.3390/ijms231810291] [Reference Citation Analysis]
|
33 |
Castañeda-valbuena D, Berenguer-murcia Á, Fernandez-lafuente R, Morellon-sterling R, Tacias-pascacio VG. Biological activities of peptides obtained by pepsin hydrolysis of fishery products. Process Biochemistry 2022;120:53-63. [DOI: 10.1016/j.procbio.2022.05.029] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
|
34 |
Chinemerem Nwobodo D, Ugwu MC, Oliseloke Anie C, Al-Ouqaili MTS, Chinedu Ikem J, Victor Chigozie U, Saki M. Antibiotic resistance: The challenges and some emerging strategies for tackling a global menace. J Clin Lab Anal 2022;:e24655. [PMID: 35949048 DOI: 10.1002/jcla.24655] [Reference Citation Analysis]
|
35 |
Sur VP, Simonik O, Novotna M, Mazumdar A, Liska F, Vimberg V, Komrskova K. Dynamic study of small toxic hydrophobic proteins PepA1 and PepG1 of Staphylococcus aureus. Int J Biol Macromol 2022:S0141-8130(22)01624-5. [PMID: 35932805 DOI: 10.1016/j.ijbiomac.2022.07.192] [Reference Citation Analysis]
|
36 |
Getahun YA, Ali DA, Taye BW, Alemayehu YA. Multidrug-Resistant Microbial Therapy Using Antimicrobial Peptides and the CRISPR/Cas9 System. VMRR 2022;Volume 13:173-190. [DOI: 10.2147/vmrr.s366533] [Reference Citation Analysis]
|
37 |
Bellotti D, Remelli M. Lights and Shadows on the Therapeutic Use of Antimicrobial Peptides. Molecules 2022;27:4584. [DOI: 10.3390/molecules27144584] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 8.0] [Reference Citation Analysis]
|
38 |
Mironov T, Yakovlev A, Sabaneyeva E. Together forever: Inseparable partners of the symbiotic system Paramecium multimicronucleatum/Ca. Trichorickettsia mobilis. Symbiosis. [DOI: 10.1007/s13199-022-00854-z] [Reference Citation Analysis]
|
39 |
Haji Hossein Tabrizi A, Habibi M, Foroohi F, Mohammadian T, Asadi Karam MR. Investigation of the effects of antimicrobial and anti-biofilm peptide IDR1018 and chitosan nanoparticles on ciprofloxacin-resistant Escherichia coli. J Basic Microbiol 2022. [PMID: 35729017 DOI: 10.1002/jobm.202200156] [Reference Citation Analysis]
|
40 |
Zheng X, Yang N, Mao R, Hao Y, Teng D, Wang J. Pharmacokinetics and Pharmacodynamics of Fungal Defensin NZX Against Staphylococcus aureus-Induced Mouse Peritonitis Model. Front Microbiol 2022;13:865774. [PMID: 35722282 DOI: 10.3389/fmicb.2022.865774] [Reference Citation Analysis]
|
41 |
Rahman MRT, Fliss I, Biron E. Insights in the Development and Uses of Alternatives to Antibiotic Growth Promoters in Poultry and Swine Production. Antibiotics 2022;11:766. [DOI: 10.3390/antibiotics11060766] [Reference Citation Analysis]
|
42 |
Chiș AA, Rus LL, Morgovan C, Arseniu AM, Frum A, Vonica-Țincu AL, Gligor FG, Mureșan ML, Dobrea CM. Microbial Resistance to Antibiotics and Effective Antibiotherapy. Biomedicines 2022;10. [PMID: 35625857 DOI: 10.3390/biomedicines10051121] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
|
43 |
Eom KH, Li S, Lee EG, Kim JH, Kim JR, Kim I. Synthetic Polypeptides with Cationic Arginine Moieties Showing High Antimicrobial Activity in Similar Mineral Environments to Blood Plasma. Polymers (Basel) 2022;14. [PMID: 35567037 DOI: 10.3390/polym14091868] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
44 |
Li X, Zuo S, Wang B, Zhang K, Wang Y. Antimicrobial Mechanisms and Clinical Application Prospects of Antimicrobial Peptides. Molecules 2022;27:2675. [PMID: 35566025 DOI: 10.3390/molecules27092675] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
|
45 |
Saeed SI, Mergani A, Aklilu E, Kamaruzzman NF. Antimicrobial Peptides: Bringing Solution to the Rising Threats of Antimicrobial Resistance in Livestock. Front Vet Sci 2022;9:851052. [DOI: 10.3389/fvets.2022.851052] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
46 |
Cavaco M, Castanho MARB, Neves V. The Use of Antibody-Antibiotic Conjugates to Fight Bacterial Infections. Front Microbiol 2022;13:835677. [PMID: 35330773 DOI: 10.3389/fmicb.2022.835677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
|
47 |
Maione A, Bellavita R, de Alteriis E, Galdiero S, Albarano L, La Pietra A, Guida M, Parrilli E, D'Angelo C, Galdiero E, Falanga A. WMR Peptide as Antifungal and Antibiofilm against Albicans and Non-Albicans Candida Species: Shreds of Evidence on the Mechanism of Action. Int J Mol Sci 2022;23:2151. [PMID: 35216270 DOI: 10.3390/ijms23042151] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 9.0] [Reference Citation Analysis]
|
48 |
Bolatchiev A. Antimicrobial Peptides Epinecidin-1 and Beta-Defesin-3 Are Effective against a Broad Spectrum of Antibiotic-Resistant Bacterial Isolates and Increase Survival Rate in Experimental Sepsis. Antibiotics (Basel) 2022;11:76. [PMID: 35052952 DOI: 10.3390/antibiotics11010076] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
|
49 |
Zhu Y, Hao W, Wang X, Ouyang J, Deng X, Yu H, Wang Y. Antimicrobial peptides, conventional antibiotics, and their synergistic utility for the treatment of drug-resistant infections. Med Res Rev 2022. [PMID: 34984699 DOI: 10.1002/med.21879] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 10.0] [Reference Citation Analysis]
|
50 |
Kravchenko SV, Domnin PA, Grishin SY, Panfilov AV, Azev VN, Mustaeva LG, Gorbunova EY, Kobyakova MI, Surin AK, Glyakina AV, Fadeev RS, Ermolaeva SA, Galzitskaya OV. Multiple Antimicrobial Effects of Hybrid Peptides Synthesized Based on the Sequence of Ribosomal S1 Protein from Staphylococcus aureus. Int J Mol Sci 2022;23:524. [PMID: 35008951 DOI: 10.3390/ijms23010524] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 6.0] [Reference Citation Analysis]
|
51 |
Dutta SR, Mondal KC. The Implication of Antimicrobial Peptides Against Bacteria and Their Clinical Aspects. Alternatives to Antibiotics 2022. [DOI: 10.1007/978-981-19-1854-4_19] [Reference Citation Analysis]
|
52 |
Mao Y, Zhou S, Xu M, Zeng S, Fan W, Yu L, Lin N. The Metabolic Stability of Antimicrobial Peptides IK8 in Plasma and Liver S9. Applied Sciences 2021;11:11661. [DOI: 10.3390/app112411661] [Reference Citation Analysis]
|
53 |
Gomes A, Bessa LJ, Fernandes I, Ferraz R, Monteiro C, L Martins MC, Mateus N, Gameiro P, Teixeira C, Gomes P. Disclosure of a Promising Lead to Tackle Complicated Skin and Skin Structure Infections: Antimicrobial and Antibiofilm Actions of Peptide PP4-3.1. Pharmaceutics 2021;13:1962. [PMID: 34834377 DOI: 10.3390/pharmaceutics13111962] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
|