BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Jung DH, Kim NY, Moon SH, Jhin C, Kim HJ, Yang JS, Kim HS, Lee TS, Lee JY, Park SH. Deep Learning-Based Cattle Vocal Classification Model and Real-Time Livestock Monitoring System with Noise Filtering. Animals (Basel) 2021;11:357. [PMID: 33535390 DOI: 10.3390/ani11020357] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Luo L, Guo S, Wang M, Qiu H, Liu Z. Adaptive Noise Reduction Algorithm Based on SPP and NMF for Environmental Sound Event Recognition under Low-SNR Conditions. Wireless Communications and Mobile Computing 2023;2023:1-11. [DOI: 10.1155/2023/6582296] [Reference Citation Analysis]
2 Periyanayagi S, Priya GG, Chandrasekar T, Sumathy V, Raja SP. Artificial intelligence and IoT-based biomedical sensors for intelligent cattle husbandry systems. Int J Wavelets Multiresolut Inf Process 2022;20. [DOI: 10.1142/s0219691322500266] [Reference Citation Analysis]
3 Dhanya V, Subeesh A, Kushwaha N, Vishwakarma D, Nagesh Kumar T, Ritika G, Singh A. Deep learning based computer vision approaches for smart agricultural applications. Artificial Intelligence in Agriculture 2022. [DOI: 10.1016/j.aiia.2022.09.007] [Reference Citation Analysis]
4 Singh D, Singh R, Gehlot A, Akram SV, Priyadarshi N, Twala B. An Imperative Role of Digitalization in Monitoring Cattle Health for Sustainability. Electronics 2022;11:2702. [DOI: 10.3390/electronics11172702] [Reference Citation Analysis]
5 Yadav S, Kaushik A, Sharma M, Sharma S. Disruptive Technologies in Smart Farming: An Expanded View with Sentiment Analysis. AgriEngineering 2022;4:424-60. [DOI: 10.3390/agriengineering4020029] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
6 González-baldizón Y, Pérez-patricio M, Camas-anzueto JL, Rodríguez-elías OM, Escobar-gómez EN, Vazquez-delgado HD, Guzman-rabasa JA, Fragoso-mandujano JA. Lamb Behaviors Analysis Using a Predictive CNN Model and a Single Camera. Applied Sciences 2022;12:4712. [DOI: 10.3390/app12094712] [Reference Citation Analysis]
7 Tuvay NH, Ermetin O. Yapay Zeka Teknolojilerinin Hayvancılıkta Kullanımı. Hayvansal Üretim 2022. [DOI: 10.29185/hayuretim.1034328] [Reference Citation Analysis]
8 Trapanotto M, Nanni L, Brahnam S, Guo X. Convolutional Neural Networks for the Identification of African Lions from Individual Vocalizations. J Imaging 2022;8:96. [DOI: 10.3390/jimaging8040096] [Reference Citation Analysis]
9 Lei L, Che H. Multiple Musical Instrument Signal Recognition Based on Convolutional Neural Network. Scientific Programming 2022;2022:1-11. [DOI: 10.1155/2022/5117546] [Reference Citation Analysis]
10 Stowell D. Computational bioacoustics with deep learning: a review and roadmap. PeerJ 2022;10:e13152. [PMID: 35341043 DOI: 10.7717/peerj.13152] [Cited by in Crossref: 29] [Cited by in F6Publishing: 26] [Article Influence: 29.0] [Reference Citation Analysis]
11 Jung D, Kim JD, Kim H, Lee TS, Kim HS, Park SH. A Hyperspectral Data 3D Convolutional Neural Network Classification Model for Diagnosis of Gray Mold Disease in Strawberry Leaves. Front Plant Sci 2022;13:837020. [DOI: 10.3389/fpls.2022.837020] [Reference Citation Analysis]
12 Sattar F. A Context-Aware Method-Based Cattle Vocal Classification for Livestock Monitoring in Smart Farm. IOCAG 2022 2022. [DOI: 10.3390/iocag2022-12233] [Reference Citation Analysis]
13 Rejeb A, Rejeb K, Zailani S, Keogh JG, Appolloni A. Examining the interplay between artificial intelligence and the agri-food industry. Artificial Intelligence in Agriculture 2022;6:111-28. [DOI: 10.1016/j.aiia.2022.08.002] [Reference Citation Analysis]
14 Yılmaz B, Sen M, Masazade E, Beskardes V. Behavior Classification of Egyptian Fruit Bat (Rousettus aegyptiacus) From Calls With Deep Learning. Handbook of Research on New Investigations in Artificial Life, AI, and Machine Learning 2022. [DOI: 10.4018/978-1-7998-8686-0.ch004] [Reference Citation Analysis]
15 Oren A. Exploring Multi-Modality in Animal-Centered Computing. Eight International Conference on Animal-Computer Interaction 2021. [DOI: 10.1145/3493842.3493900] [Reference Citation Analysis]
16 Qiao Y, Kong H, Clark C, Lomax S, Su D, Eiffert S, Sukkarieh S. Intelligent Perception-Based Cattle Lameness Detection and Behaviour Recognition: A Review. Animals (Basel) 2021;11:3033. [PMID: 34827766 DOI: 10.3390/ani11113033] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
17 Angarita-Zapata JS, Alonso-Vicario A, Masegosa AD, Legarda J. A Taxonomy of Food Supply Chain Problems from a Computational Intelligence Perspective. Sensors (Basel) 2021;21:6910. [PMID: 34696123 DOI: 10.3390/s21206910] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
18 Jung D, Kim NY, Moon SH, Kim HS, Lee TS, Yang J, Lee JY, Han X, Park SH. Classification of Vocalization Recordings of Laying Hens and Cattle Using Convolutional Neural Network Models. J Biosyst Eng 2021;46:217-24. [DOI: 10.1007/s42853-021-00101-1] [Cited by in Crossref: 5] [Cited by in F6Publishing: 2] [Article Influence: 2.5] [Reference Citation Analysis]
19 Li G, Xiong Y, Du Q, Shi Z, Gates RS. Classifying Ingestive Behavior of Dairy Cows via Automatic Sound Recognition. Sensors (Basel) 2021;21:5231. [PMID: 34372468 DOI: 10.3390/s21155231] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]