BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Trovato E, Di Felice V, Barone R. Extracellular Vesicles: Delivery Vehicles of Myokines. Front Physiol 2019;10:522. [PMID: 31133872 DOI: 10.3389/fphys.2019.00522] [Cited by in Crossref: 48] [Cited by in F6Publishing: 50] [Article Influence: 16.0] [Reference Citation Analysis]
Number Citing Articles
1 Castaño C, Meza-ramos A, Batlle M, Guasch E, Novials A, Párrizas M. Treatment with EV-miRNAs Alleviates Obesity-Associated Metabolic Dysfunction in Mice. IJMS 2022;23:14920. [DOI: 10.3390/ijms232314920] [Reference Citation Analysis]
2 Deng W, Wang X, Chen L, Wen B, Chen Y, Ji K, Liu H. Proteomic and miRNA Profiles of Exosomes Derived from Myometrial Tissue in Laboring Women. Int J Mol Sci 2022;23:12343. [PMID: 36293200 DOI: 10.3390/ijms232012343] [Reference Citation Analysis]
3 Bhardwaj V, Dela Cruz M, Subramanyam D, Kumar R, Markan S, Parker B, Roy HK. Exercise-induced myokines downregulates the ACE2 level in bronchial epithelial cells: Implications for SARS-CoV-2 prevention. PLoS ONE 2022;17:e0271303. [DOI: 10.1371/journal.pone.0271303] [Reference Citation Analysis]
4 Huang Q, Wu M, Wu X, Zhang Y, Xia Y. Muscle-to-tumor crosstalk: The effect of exercise-induced myokine on cancer progression. Biochim Biophys Acta Rev Cancer 2022;1877:188761. [PMID: 35850277 DOI: 10.1016/j.bbcan.2022.188761] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Di Felice V, Coletti D, Seelaender M. Editorial: Myokines, Adipokines, Cytokines in Muscle Pathophysiology, Volume II. Front Physiol 2022;13:907956. [PMID: 35707006 DOI: 10.3389/fphys.2022.907956] [Reference Citation Analysis]
6 Telles GD, Conceição MS, Vechin FC, Libardi CA, Mori MADS, Derchain S, Ugrinowitsch C. Exercise-Induced Circulating microRNAs: Potential Key Factors in the Control of Breast Cancer. Front Physiol 2022;13:800094. [DOI: 10.3389/fphys.2022.800094] [Reference Citation Analysis]
7 Papadopetraki A, Maridaki M, Zagouri F, Dimopoulos M, Koutsilieris M, Philippou A. Physical Exercise Restrains Cancer Progression through Muscle-Derived Factors. Cancers 2022;14:1892. [DOI: 10.3390/cancers14081892] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Lustig RH, Collier D, Kassotis C, Roepke TA, Ji Kim M, Blanc E, Barouki R, Bansal A, Cave MC, Chatterjee S, Choudhury M, Gilbertson M, Lagadic-Gossmann D, Howard S, Lind L, Tomlinson CR, Vondracek J, Heindel JJ. Obesity I: Overview and molecular and biochemical mechanisms. Biochem Pharmacol 2022;:115012. [PMID: 35393120 DOI: 10.1016/j.bcp.2022.115012] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
9 Mendivil-alvarado H, Sosa-león LA, Carvajal-millan E, Astiazaran-garcia H. Malnutrition and Biomarkers: A Journey through Extracellular Vesicles. Nutrients 2022;14:1002. [DOI: 10.3390/nu14051002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Obi PO, Seif S, Bydak B, Pierdoná TM, Turner-brannen E, West AR, Labouta HI, Gordon JW, Saleem A. Skeletal muscle-derived extracellular vesicles are altered with chronic contractile activity.. [DOI: 10.1101/2022.02.25.481852] [Reference Citation Analysis]
11 Fang D, Tang W, Zhao X, Sun H, Gu T, Bi Y. Gender differences in the association of body composition and biopsy-proved nonalcoholic steatohepatitis. Hepatol Int 2022. [PMID: 35201574 DOI: 10.1007/s12072-021-10265-9] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
12 Imai N, Nicholls HT, Alves-Bezerra M, Li Y, Ivanova AA, Ortlund EA, Cohen DE. Up-regulation of thioesterase superfamily member 2 in skeletal muscle promotes hepatic steatosis and insulin resistance in mice. Hepatology 2022;75:154-69. [PMID: 34433228 DOI: 10.1002/hep.32122] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
13 Chu-Tan JA, Kirkby M, Natoli R. Running to save sight: The effects of exercise on retinal health and function. Clin Exp Ophthalmol 2021. [PMID: 34741489 DOI: 10.1111/ceo.14023] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
14 de Sousa CAZ, Sierra APR, Martínez Galán BS, Maciel JFS, Manoel R, Barbeiro HV, de Souza HP, Cury-Boaventura MF. Time Course and Role of Exercise-Induced Cytokines in Muscle Damage and Repair After a Marathon Race. Front Physiol 2021;12:752144. [PMID: 34721075 DOI: 10.3389/fphys.2021.752144] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
15 Liang J, Wang C, Zhang H, Huang J, Xie J, Chen N. Exercise-Induced Benefits for Alzheimer's Disease by Stimulating Mitophagy and Improving Mitochondrial Function. Front Aging Neurosci 2021;13:755665. [PMID: 34658846 DOI: 10.3389/fnagi.2021.755665] [Cited by in Crossref: 5] [Cited by in F6Publishing: 9] [Article Influence: 5.0] [Reference Citation Analysis]
16 Kyriakidou Y, Cooper I, Kraev I, Lange S, Elliott BT. Preliminary Investigations Into the Effect of Exercise-Induced Muscle Damage on Systemic Extracellular Vesicle Release in Trained Younger and Older Men. Front Physiol 2021;12:723931. [PMID: 34650440 DOI: 10.3389/fphys.2021.723931] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Zhang Y, Kim JS, Wang TZ, Newton RU, Galvão DA, Gardiner RA, Hill MM, Taaffe DR. Potential Role of Exercise Induced Extracellular Vesicles in Prostate Cancer Suppression. Front Oncol 2021;11:746040. [PMID: 34595123 DOI: 10.3389/fonc.2021.746040] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Lou J, Wu J, Feng M, Dang X, Wu G, Yang H, Wang Y, Li J, Zhao Y, Shi C, Liu J, Zhao L, Zhang X, Gao F. Exercise promotes angiogenesis by enhancing endothelial cell fatty acid use via liver-derived extracellular vesicle miR-122-5p. J Sport Health Sci 2021:S2095-2546(21)00106-X. [PMID: 34606978 DOI: 10.1016/j.jshs.2021.09.009] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
19 Magliulo L, Bondi D, Pini N, Marramiero L, Di Filippo ES. The wonder exerkines-novel insights: a critical state-of-the-art review. Mol Cell Biochem 2021. [PMID: 34554363 DOI: 10.1007/s11010-021-04264-5] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 8.0] [Reference Citation Analysis]
20 Belli R, Ferraro E, Molfino A, Carletti R, Tambaro F, Costelli P, Muscaritoli M. Liquid Biopsy for Cancer Cachexia: Focus on Muscle-Derived microRNAs. Int J Mol Sci 2021;22:9007. [PMID: 34445710 DOI: 10.3390/ijms22169007] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
21 Isaac AR, Lima-Filho RAS, Lourenco MV. How does the skeletal muscle communicate with the brain in health and disease? Neuropharmacology 2021;197:108744. [PMID: 34363812 DOI: 10.1016/j.neuropharm.2021.108744] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 10.0] [Reference Citation Analysis]
22 Pikatza-Menoio O, Elicegui A, Bengoetxea X, Naldaiz-Gastesi N, López de Munain A, Gerenu G, Gil-Bea FJ, Alonso-Martín S. The Skeletal Muscle Emerges as a New Disease Target in Amyotrophic Lateral Sclerosis. J Pers Med 2021;11:671. [PMID: 34357138 DOI: 10.3390/jpm11070671] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
23 Wang C, Li Z, Liu Y, Yuan L. Exosomes in atherosclerosis: performers, bystanders, biomarkers, and therapeutic targets. Theranostics 2021;11:3996-4010. [PMID: 33664877 DOI: 10.7150/thno.56035] [Cited by in Crossref: 16] [Cited by in F6Publishing: 19] [Article Influence: 16.0] [Reference Citation Analysis]
24 Nederveen JP, Warnier G, Di Carlo A, Nilsson MI, Tarnopolsky MA. Extracellular Vesicles and Exosomes: Insights From Exercise Science. Front Physiol 2020;11:604274. [PMID: 33597890 DOI: 10.3389/fphys.2020.604274] [Cited by in Crossref: 34] [Cited by in F6Publishing: 35] [Article Influence: 34.0] [Reference Citation Analysis]
25 Pang BPS, Chan WS, Chan CB. Mitochondria Homeostasis and Oxidant/Antioxidant Balance in Skeletal Muscle-Do Myokines Play a Role? Antioxidants (Basel) 2021;10:179. [PMID: 33513795 DOI: 10.3390/antiox10020179] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 7.0] [Reference Citation Analysis]
26 Penna C, Femminò S, Alloatti G, Brizzi MF, Angelone T, Pagliaro P. Extracellular Vesicles in Comorbidities Associated with Ischaemic Heart Disease: Focus on Sex, an Overlooked Factor. J Clin Med 2021;10:327. [PMID: 33477341 DOI: 10.3390/jcm10020327] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
27 Berardi E, Madaro L, Lozanoska-Ochser B, Adamo S, Thorrez L, Bouche M, Coletti D. A Pound of Flesh: What Cachexia Is and What It Is Not. Diagnostics (Basel) 2021;11:116. [PMID: 33445790 DOI: 10.3390/diagnostics11010116] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 11.0] [Reference Citation Analysis]
28 Soares E, Reis J, Rodrigues M, Ribeiro CF, Pereira FC. Circulating Extracellular Vesicles: The Missing Link between Physical Exercise and Depression Management? Int J Mol Sci 2021;22:E542. [PMID: 33430399 DOI: 10.3390/ijms22020542] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 7.0] [Reference Citation Analysis]
29 Brahmer A, Neuberger EWI, Simon P, Krämer-Albers EM. Considerations for the Analysis of Small Extracellular Vesicles in Physical Exercise. Front Physiol 2020;11:576150. [PMID: 33343383 DOI: 10.3389/fphys.2020.576150] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
30 Pierdoná TM, Martin A, Obi PO, Seif S, Bydak B, Eadie A, Brunt K, Mcgavock JM, Sénéchal M, Saleem A. Extracellular vesicles as predictors of individual response to exercise training in youth living with obesity.. [DOI: 10.1101/2020.11.20.390872] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
31 Hong BS, Lee KP. A systematic review of the biological mechanisms linking physical activity and breast cancer. Phys Act Nutr 2020;24:25-31. [PMID: 33108715 DOI: 10.20463/pan.2020.0018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 16] [Article Influence: 7.5] [Reference Citation Analysis]
32 Rojalin T, Koster HJ, Liu J, Mizenko RR, Tran D, Wachsmann-Hogiu S, Carney RP. Hybrid Nanoplasmonic Porous Biomaterial Scaffold for Liquid Biopsy Diagnostics Using Extracellular Vesicles. ACS Sens 2020;5:2820-33. [PMID: 32935542 DOI: 10.1021/acssensors.0c00953] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 13.5] [Reference Citation Analysis]
33 Kuwajima Y, Nagai MS, Lee C, Galaburda AM, Kobayashi T, Nakasato A, Da Silva JD, Nagai SI, Nagai M. Trans-trigeminal transport of masseter-derived neprilysin to hippocampus. Arch Oral Biol 2020;118:104861. [PMID: 32835988 DOI: 10.1016/j.archoralbio.2020.104861] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
34 Di Credico A, Izzicupo P, Gaggi G, Di Baldassarre A, Ghinassi B. Effect of Physical Exercise on the Release of Microparticles with Angiogenic Potential. Applied Sciences 2020;10:4871. [DOI: 10.3390/app10144871] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 5.5] [Reference Citation Analysis]
35 de Oliveira GP Jr, Porto WF, Palu CC, Pereira LM, Reis AMM, Marçola TG, Teixeira-Neto AR, Franco OL, Pereira RW. Effects of endurance racing on horse plasma extracellular particle miRNA. Equine Vet J 2021;53:618-27. [PMID: 32484928 DOI: 10.1111/evj.13300] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
36 Baci D, Chirivì M, Pace V, Maiullari F, Milan M, Rampin A, Somma P, Presutti D, Garavelli S, Bruno A, Cannata S, Lanzuolo C, Gargioli C, Rizzi R, Bearzi C. Extracellular Vesicles from Skeletal Muscle Cells Efficiently Promote Myogenesis in Induced Pluripotent Stem Cells. Cells 2020;9:E1527. [PMID: 32585911 DOI: 10.3390/cells9061527] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
37 Iyer SR, Scheiber AL, Yarowsky P, Henn RF 3rd, Otsuru S, Lovering RM. Exosomes Isolated From Platelet-Rich Plasma and Mesenchymal Stem Cells Promote Recovery of Function After Muscle Injury. Am J Sports Med 2020;48:2277-86. [PMID: 32543878 DOI: 10.1177/0363546520926462] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 12.0] [Reference Citation Analysis]
38 Yanai K, Kaneko S, Ishii H, Aomatsu A, Ito K, Hirai K, Ookawara S, Ishibashi K, Morishita Y. MicroRNAs in Sarcopenia: A Systematic Review. Front Med (Lausanne) 2020;7:180. [PMID: 32549041 DOI: 10.3389/fmed.2020.00180] [Cited by in Crossref: 20] [Cited by in F6Publishing: 21] [Article Influence: 10.0] [Reference Citation Analysis]
39 Herrmann M, Engelke K, Ebert R, Müller-Deubert S, Rudert M, Ziouti F, Jundt F, Felsenberg D, Jakob F. Interactions between Muscle and Bone-Where Physics Meets Biology. Biomolecules 2020;10:E432. [PMID: 32164381 DOI: 10.3390/biom10030432] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 19.5] [Reference Citation Analysis]
40 Moon HY, Yoon KJ, Lee WS, Cho HS, Kim DY, Kim JS. Neural maturation enhanced by exercise-induced extracellular derivatives. Sci Rep 2020;10:3893. [PMID: 32127592 DOI: 10.1038/s41598-020-60930-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
41 Vechetti IJ Jr, Valentino T, Mobley CB, McCarthy JJ. The role of extracellular vesicles in skeletal muscle and systematic adaptation to exercise. J Physiol 2021;599:845-61. [PMID: 31944292 DOI: 10.1113/JP278929] [Cited by in Crossref: 36] [Cited by in F6Publishing: 38] [Article Influence: 18.0] [Reference Citation Analysis]
42 Stacchiotti A, Favero G, Rodella LF. Impact of Melatonin on Skeletal Muscle and Exercise. Cells 2020;9:E288. [PMID: 31991655 DOI: 10.3390/cells9020288] [Cited by in Crossref: 32] [Cited by in F6Publishing: 32] [Article Influence: 16.0] [Reference Citation Analysis]
43 Assi M, Dufresne S, Rébillard A. Exercise shapes redox signaling in cancer. Redox Biol 2020;35:101439. [PMID: 31974046 DOI: 10.1016/j.redox.2020.101439] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
44 Kakarla R, Hur J, Kim YJ, Kim J, Chwae YJ. Apoptotic cell-derived exosomes: messages from dying cells. Exp Mol Med 2020;52:1-6. [PMID: 31915368 DOI: 10.1038/s12276-019-0362-8] [Cited by in Crossref: 92] [Cited by in F6Publishing: 96] [Article Influence: 46.0] [Reference Citation Analysis]
45 Nieman DC, Pence BD. Exercise immunology: Future directions. J Sport Health Sci 2020;9:432-45. [PMID: 32928447 DOI: 10.1016/j.jshs.2019.12.003] [Cited by in Crossref: 33] [Cited by in F6Publishing: 40] [Article Influence: 11.0] [Reference Citation Analysis]
46 Morelli MB, Shu J, Sardu C, Matarese A, Santulli G. Cardiosomal microRNAs Are Essential in Post-Infarction Myofibroblast Phenoconversion. Int J Mol Sci 2019;21:E201. [PMID: 31892162 DOI: 10.3390/ijms21010201] [Cited by in Crossref: 38] [Cited by in F6Publishing: 40] [Article Influence: 12.7] [Reference Citation Analysis]
47 Memme JM, Erlich AT, Phukan G, Hood DA. Exercise and mitochondrial health. J Physiol 2021;599:803-17. [PMID: 31674658 DOI: 10.1113/JP278853] [Cited by in Crossref: 61] [Cited by in F6Publishing: 65] [Article Influence: 20.3] [Reference Citation Analysis]
48 Lam NT, Gartz M, Thomas L, Haberman M, Strande JL. Influence of microRNAs and exosomes in muscle health and diseases. J Muscle Res Cell Motil 2020;41:269-84. [PMID: 31564031 DOI: 10.1007/s10974-019-09555-5] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
49 Madison RD, Robinson GA. Muscle-Derived Extracellular Vesicles Influence Motor Neuron Regeneration Accuracy. Neuroscience 2019;419:46-59. [PMID: 31454553 DOI: 10.1016/j.neuroscience.2019.08.028] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
50 Lynch GS. Aging and Skeletal Muscle. Reference Module in Biomedical Sciences 2019. [DOI: 10.1016/b978-0-12-801238-3.11434-5] [Reference Citation Analysis]