BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: DeCant BT, Principe DR, Guerra C, Pasca di Magliano M, Grippo PJ. Utilizing past and present mouse systems to engineer more relevant pancreatic cancer models. Front Physiol 2014;5:464. [PMID: 25538623 DOI: 10.3389/fphys.2014.00464] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 2.1] [Reference Citation Analysis]
Number Citing Articles
1 Wu W, Wen K, Zhong Y. Research progress in the establishment of pancreatic cancer models and preclinical applications. Cancer Innovation 2022;1:207-219. [DOI: 10.1002/cai2.31] [Reference Citation Analysis]
2 Tang Y, Zhang S, Li J, Wu C, Fan Q. ID1 marks the tumorigenesis of pancreatic ductal adenocarcinoma in mouse and human. Sci Rep 2022;12:13555. [PMID: 35941362 DOI: 10.1038/s41598-022-17827-3] [Reference Citation Analysis]
3 Principe DR, Underwood PW, Kumar S, Timbers KE, Koch RM, Trevino JG, Munshi HG, Rana A. Loss of SMAD4 Is Associated With Poor Tumor Immunogenicity and Reduced PD-L1 Expression in Pancreatic Cancer. Front Oncol 2022;12:806963. [DOI: 10.3389/fonc.2022.806963] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
4 Principe DR, Xiong R, Li Y, Pham TND, Kamath SD, Dubrovskyi O, Ratia K, Huang F, Zhao J, Shen Z, Thummuri D, Daohong Z, Underwood PW, Trevino J, Munshi HG, Thatcher GRJ, Rana A. XP-524 is a dual-BET/EP300 inhibitor that represses oncogenic KRAS and potentiates immune checkpoint inhibition in pancreatic cancer. Proc Natl Acad Sci U S A 2022;119:e2116764119. [PMID: 35064087 DOI: 10.1073/pnas.2116764119] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
5 Principe DR, Timbers KE, Atia LG, Koch RM, Rana A. TGFβ Signaling in the Pancreatic Tumor Microenvironment. Cancers (Basel) 2021;13:5086. [PMID: 34680235 DOI: 10.3390/cancers13205086] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
6 Paoli C, Carrer A. Organotypic Culture of Acinar Cells for the Study of Pancreatic Cancer Initiation. Cancers (Basel) 2020;12:E2606. [PMID: 32932616 DOI: 10.3390/cancers12092606] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
7 Brocco D, Florio R, De Lellis L, Veschi S, Grassadonia A, Tinari N, Cama A. The Role of Dysfunctional Adipose Tissue in Pancreatic Cancer: A Molecular Perspective. Cancers (Basel) 2020;12:E1849. [PMID: 32659999 DOI: 10.3390/cancers12071849] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
8 Jiang Z, White RA, Wang TC. Adult Pancreatic Acinar Progenitor-like Populations in Regeneration and Cancer. Trends Mol Med 2020;26:758-67. [PMID: 32362534 DOI: 10.1016/j.molmed.2020.04.003] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
9 Velliou E, Gupta P, Ricci C, Danti S. Biomaterial-based in vitro models for pancreatic cancer. Biomaterials for 3D Tumor Modeling 2020. [DOI: 10.1016/b978-0-12-818128-7.00011-3] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
10 Li J, Qian W, Qin T, Xiao Y, Cheng L, Cao J, Chen X, Ma Q, Wu Z. Mouse-Derived Allografts: A Complementary Model to the KPC Mice on Researching Pancreatic Cancer In Vivo. Comput Struct Biotechnol J 2019;17:498-506. [PMID: 31011408 DOI: 10.1016/j.csbj.2019.03.016] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
11 Principe DR, Overgaard NH, Park AJ, Diaz AM, Torres C, McKinney R, Dorman MJ, Castellanos K, Schwind R, Dawson DW, Rana A, Maker A, Munshi HG, Rund LA, Grippo PJ, Schook LB. KRASG12D and TP53R167H Cooperate to Induce Pancreatic Ductal Adenocarcinoma in Sus scrofa Pigs. Sci Rep 2018;8:12548. [PMID: 30135483 DOI: 10.1038/s41598-018-30916-6] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
12 Dugnani E, Pasquale V, Marra P, Liberati D, Canu T, Perani L, De Sanctis F, Ugel S, Invernizzi F, Citro A, Venturini M, Doglioni C, Esposito A, Piemonti L. Four-class tumor staging for early diagnosis and monitoring of murine pancreatic cancer using magnetic resonance and ultrasound. Carcinogenesis 2018;39:1197-206. [DOI: 10.1093/carcin/bgy094] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
13 Principe DR, Overgaard NH, Park AJ, Diaz AM, Torres C, Mckinney R, Dorman MJ, Castellanos K, Schwind R, Dawson DW, Rana A, Maker A, Munshi HG, Rund LA, Grippo PJ, Schook LB. KRASG12D and TP53R167H Cooperate to Induce Pancreatic Ductal Adenocarcinoma in Sus Scrofa Pigs.. [DOI: 10.1101/358416] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
14 Torres C, Grippo PJ. Pancreatic cancer subtypes: a roadmap for precision medicine. Ann Med 2018;50:277-87. [PMID: 29537309 DOI: 10.1080/07853890.2018.1453168] [Cited by in Crossref: 45] [Cited by in F6Publishing: 41] [Article Influence: 9.0] [Reference Citation Analysis]
15 Williams M, Lomberk G, Urrutia R. EGFR (ErbB) Signaling Pathways in Pancreatic Cancer Pathogenesis. Pancreatic Cancer 2018. [DOI: 10.1007/978-1-4939-7193-0_15] [Reference Citation Analysis]
16 Williams M, Lomberk G, Urrutia R. EGFR (ErbB) Signaling Pathways in Pancreatic Cancer Pathogenesis. Pancreatic Cancer 2017. [DOI: 10.1007/978-1-4939-6631-8_15-2] [Cited by in Crossref: 1] [Article Influence: 0.2] [Reference Citation Analysis]
17 Sano M, Driscoll DR, DeJesus-Monge WE, Quattrochi B, Appleman VA, Ou J, Zhu LJ, Yoshida N, Yamazaki S, Takayama T, Sugitani M, Nemoto N, Klimstra DS, Lewis BC. Activation of WNT/β-Catenin Signaling Enhances Pancreatic Cancer Development and the Malignant Potential Via Up-regulation of Cyr61. Neoplasia 2016;18:785-94. [PMID: 27889647 DOI: 10.1016/j.neo.2016.11.004] [Cited by in Crossref: 39] [Cited by in F6Publishing: 42] [Article Influence: 5.6] [Reference Citation Analysis]
18 Gopinathan A, Morton JP, Jodrell DI, Sansom OJ. GEMMs as preclinical models for testing pancreatic cancer therapies. Dis Model Mech 2015;8:1185-200. [PMID: 26438692 DOI: 10.1242/dmm.021055] [Cited by in Crossref: 73] [Cited by in F6Publishing: 80] [Article Influence: 10.4] [Reference Citation Analysis]
19 Lee JW, Komar CA, Bengsch F, Graham K, Beatty GL. Genetically Engineered Mouse Models of Pancreatic Cancer: The KPC Model (LSL-Kras(G12D/+) ;LSL-Trp53(R172H/+) ;Pdx-1-Cre), Its Variants, and Their Application in Immuno-oncology Drug Discovery. Curr Protoc Pharmacol 2016;73:14.39.1-14.39.20. [PMID: 27248578 DOI: 10.1002/cpph.2] [Cited by in Crossref: 82] [Cited by in F6Publishing: 96] [Article Influence: 11.7] [Reference Citation Analysis]
20 Garcia-Carracedo D, Yu CC, Akhavan N, Fine SA, Schönleben F, Maehara N, Karg DC, Xie C, Qiu W, Fine RL. Smad4 loss synergizes with TGFα overexpression in promoting pancreatic metaplasia, PanIN development, and fibrosis. PLoS One. 2015;10:e0120851. [PMID: 25803032 DOI: 10.1371/journal.pone.0120851] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 1.6] [Reference Citation Analysis]