BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Burnstock G. Purinergic Signalling: Therapeutic Developments. Front Pharmacol 2017;8:661. [PMID: 28993732 DOI: 10.3389/fphar.2017.00661] [Cited by in Crossref: 170] [Cited by in F6Publishing: 164] [Article Influence: 34.0] [Reference Citation Analysis]
Number Citing Articles
1 Yu Y, Feng S, Wei S, Zhong Y, Yi G, Chen H, Liang L, Chen H, Lu X. Extracellular ATP activates P2X7R-NF-κB (p65) pathway to promote the maturation of bone marrow-derived dendritic cells of mice. Cytokine 2019;119:175-81. [PMID: 30952064 DOI: 10.1016/j.cyto.2019.03.019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
2 Hallaj S, Mirza-Aghazadeh-Attari M, Arasteh A, Ghorbani A, Lee D, Jadidi-Niaragh F. Adenosine: The common target between cancer immunotherapy and glaucoma in the eye. Life Sci 2021;282:119796. [PMID: 34245774 DOI: 10.1016/j.lfs.2021.119796] [Reference Citation Analysis]
3 Tang Y, Yin HY, Liu J, Rubini P, Illes P. P2X receptors and acupuncture analgesia. Brain Res Bull 2019;151:144-52. [PMID: 30458249 DOI: 10.1016/j.brainresbull.2018.10.015] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 4.8] [Reference Citation Analysis]
4 Graner MW. Extracellular vesicles in cancer immune responses: roles of purinergic receptors. Semin Immunopathol 2018;40:465-75. [PMID: 30209547 DOI: 10.1007/s00281-018-0706-9] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 2.8] [Reference Citation Analysis]
5 Magni G, Ceruti S. Adenosine Signaling in Autoimmune Disorders. Pharmaceuticals (Basel) 2020;13:E260. [PMID: 32971792 DOI: 10.3390/ph13090260] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
6 Boes DM, Godoy-Hernandez A, McMillan DGG. Peripheral Membrane Proteins: Promising Therapeutic Targets across Domains of Life. Membranes (Basel) 2021;11:346. [PMID: 34066904 DOI: 10.3390/membranes11050346] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Hou T, Xiang H, Yu L, Su W, Shu Y, Li H, Zhu H, Lin L, Hu X, Liang S, Zhang H, Li M. Electroacupuncture inhibits visceral pain via adenosine receptors in mice with inflammatory bowel disease. Purinergic Signal 2019;15:193-204. [PMID: 31187350 DOI: 10.1007/s11302-019-09655-4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
8 Yu J, Ciancetta A, Dudas S, Duca S, Lottermoser J, Jacobson KA. Structure-Guided Modification of Heterocyclic Antagonists of the P2Y14 Receptor. J Med Chem 2018;61:4860-82. [PMID: 29767967 DOI: 10.1021/acs.jmedchem.8b00168] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
9 Han Y, Bai C, He XM, Ren QL. P2X7 receptor involved in antitumor activity of atractylenolide I in human cervical cancer cells. Purinergic Signal 2022. [PMID: 35235139 DOI: 10.1007/s11302-022-09854-6] [Reference Citation Analysis]
10 Fonseca E, Mesquita P, Marques CC, Baptista MC, Pimenta J, Matos JE, Soveral G, Pereira RMLN. Modulation of P2Y2 receptors in bovine cumulus oocyte complexes: effects on intracellular calcium, zona hardening and developmental competence. Purinergic Signal 2020;16:85-96. [PMID: 32043211 DOI: 10.1007/s11302-020-09690-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 Bagheri S, Saboury AA, Haertlé T. Adenosine deaminase inhibition. Int J Biol Macromol 2019;141:1246-57. [PMID: 31520704 DOI: 10.1016/j.ijbiomac.2019.09.078] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
12 Zou Y, Yang R, Li L, Xu X, Liang S. Purinergic signaling: a potential therapeutic target for depression and chronic pain. Purinergic Signal 2021. [PMID: 34338957 DOI: 10.1007/s11302-021-09801-x] [Reference Citation Analysis]
13 Paige C, Maruthy GB, Mejia G, Dussor G, Price T. Spinal Inhibition of P2XR or p38 Signaling Disrupts Hyperalgesic Priming in Male, but not Female, Mice. Neuroscience 2018;385:133-42. [PMID: 29913243 DOI: 10.1016/j.neuroscience.2018.06.012] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 5.5] [Reference Citation Analysis]
14 Di Virgilio F, Sarti AC, Coutinho-Silva R. Purinergic signaling, DAMPs, and inflammation. Am J Physiol Cell Physiol 2020;318:C832-5. [PMID: 32159362 DOI: 10.1152/ajpcell.00053.2020] [Cited by in Crossref: 27] [Cited by in F6Publishing: 27] [Article Influence: 13.5] [Reference Citation Analysis]
15 Perkins AE, Piazza MK, Vore AS, Deak MM, Varlinskaya EI, Deak T. Assessment of neuroinflammation in the aging hippocampus using large-molecule microdialysis: Sex differences and role of purinergic receptors. Brain, Behavior, and Immunity 2021;91:546-55. [DOI: 10.1016/j.bbi.2020.11.013] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Leão Batista Simões J, Fornari Basso H, Cristine Kosvoski G, Gavioli J, Marafon F, Elias Assmann C, Barbosa Carvalho F, Dulce Bagatini M. Targeting purinergic receptors to suppress the cytokine storm induced by SARS-CoV-2 infection in pulmonary tissue. Int Immunopharmacol 2021;100:108150. [PMID: 34537482 DOI: 10.1016/j.intimp.2021.108150] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Das R, Chinnathambi S. Microglial remodeling of actin network by Tau oligomers, via G protein-coupled purinergic receptor, P2Y12R-driven chemotaxis. Traffic 2021;22:153-70. [PMID: 33527700 DOI: 10.1111/tra.12784] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
18 Gao Z, Tosh DK, Jain S, Yu J, Suresh RR, Jacobson KA. A1 Adenosine Receptor Agonists, Antagonists, and Allosteric Modulators. In: Borea PA, Varani K, Gessi S, Merighi S, Vincenzi F, editors. The Adenosine Receptors. Cham: Springer International Publishing; 2018. pp. 59-89. [DOI: 10.1007/978-3-319-90808-3_4] [Cited by in Crossref: 11] [Cited by in F6Publishing: 4] [Article Influence: 2.8] [Reference Citation Analysis]
19 Xu X, Liu B, Yang J, Zou Y, Sun M, Li Z, Li L, Yang R, Zou L, Li G, Liu S, Li G, Liang S. Glucokinase in stellate ganglia cooperates with P2X3 receptor to develop cardiac sympathetic neuropathy in type 2 diabetes rats. Brain Res Bull 2020;165:290-7. [PMID: 33091480 DOI: 10.1016/j.brainresbull.2020.10.004] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Fong Z, Griffin CS, Large RJ, Hollywood MA, Thornbury KD, Sergeant GP. Regulation of P2X1 receptors by modulators of the cAMP effectors PKA and EPAC. Proc Natl Acad Sci U S A 2021;118:e2108094118. [PMID: 34508006 DOI: 10.1073/pnas.2108094118] [Reference Citation Analysis]
21 James SD, Hawkins VE, Falquetto B, Ruskin DN, Masino SA, Moreira TS, Olsen ML, Mulkey DK. Adenosine Signaling through A1 Receptors Inhibits Chemosensitive Neurons in the Retrotrapezoid Nucleus. eNeuro 2018;5:ENEURO. [PMID: 30627640 DOI: 10.1523/ENEURO.0404-18.2018] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
22 Wang JN, Fan H, Song JT. Targeting purinergic receptors to attenuate inflammation of dry eye. Purinergic Signal 2022. [PMID: 35218451 DOI: 10.1007/s11302-022-09851-9] [Reference Citation Analysis]
23 Lammers MD, Anéli NM, de Oliveira GG, de Oliveira Maciel SF, Zanini D, Mânica A, de Resende e Silva DT, Bagatini MD, Sévigny J, De Sá CA, Manfredi LH, Cardoso AM. The anti-inflammatory effect of resistance training in hypertensive women: the role of purinergic signaling. Journal of Hypertension 2020;38:2490-500. [DOI: 10.1097/hjh.0000000000002578] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Nogueira VO, Andrade LDS, Rocha-Júnior RL, Melo PED, Helvécio E, Fontes DAF, Romão TP, Leandro CG, Costa-Silva JH. Maternal physical activity prevents the overexpression of hypoxia-inducible factor 1-α and cardiorespiratory dysfunction in protein malnourished rats. Sci Rep 2019;9:14406. [PMID: 31594995 DOI: 10.1038/s41598-019-50967-7] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
25 Madaan P, Behl T, Sehgal A, Singh S, Sharma N, Yadav S, Kaur S, Bhatia S, Al-harrasi A, Abdellatif AAH, Ashraf GM, Abdel-daim MM, Dailah HG, Anwer MK, Bungau S. Exploring the Therapeutic Potential of Targeting Purinergic and Orexinergic Receptors in Alcoholic Neuropathy. Neurotox Res. [DOI: 10.1007/s12640-022-00477-8] [Reference Citation Analysis]
26 Li B, Wang J, Cheng X, Liu Y, Yang Y, Yang X, Guo C, Niu Y, Cao P, Lu X, Zhu MX, Tian Y, Yu Y. Molecular mechanism underlying the subtype-selectivity of competitive inhibitor NF110 and its distinct potencies in human and rat P2X3 receptors. Science Bulletin 2018;63:1616-25. [DOI: 10.1016/j.scib.2018.11.016] [Cited by in Crossref: 6] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
27 Zou L, Yu K, Fan Y, Cao S, Liu S, Shi L, Li L, Yuan H, Yang R, Yi Z, Gao Y, Li G, Greffrath W, Treede RD, Li M, Xu H, Zhang C, Liang S. The Inhibition by Guanfu Base A of Neuropathic Pain Mediated by P2Y12 Receptor in Dorsal Root Ganglia. ACS Chem Neurosci 2019;10:1318-25. [PMID: 30475578 DOI: 10.1021/acschemneuro.8b00399] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
28 Martinelli F, Cuviello F, Pace MC, Armentano MF, Miglionico R, Ostuni A, Bisaccia F. Extracellular ATP Regulates CD73 and ABCC6 Expression in HepG2 Cells. Front Mol Biosci 2018;5:75. [PMID: 30155470 DOI: 10.3389/fmolb.2018.00075] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
29 Müller WEG, Ackermann M, Tolba E, Neufurth M, Ivetac I, Kokkinopoulou M, Schröder HC, Wang X. Role of ATP during the initiation of microvascularization: acceleration of an autocrine sensing mechanism facilitating chemotaxis by inorganic polyphosphate. Biochem J 2018;475:3255-73. [PMID: 30242064 DOI: 10.1042/BCJ20180535] [Cited by in Crossref: 14] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
30 Menéndez Méndez A, Smith J, Engel T. Neonatal Seizures and Purinergic Signalling. Int J Mol Sci 2020;21:E7832. [PMID: 33105750 DOI: 10.3390/ijms21217832] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
31 Illes P, Rubini P, Huang L, Tang Y. The P2X7 receptor: a new therapeutic target in Alzheimer’s disease. Expert Opinion on Therapeutic Targets 2019;23:165-76. [DOI: 10.1080/14728222.2019.1575811] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 4.7] [Reference Citation Analysis]
32 Huang G, Cao X, Li Y, Zhou C, Li L, Wang K, Li H, Yu P, Jin Y, Gao L. Gene expression profile of the hippocampus of rats subjected to traumatic brain injury. J Cell Biochem 2019;120:15776-89. [DOI: 10.1002/jcb.28848] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
33 Wenzel J, Hansen CE, Bettoni C, Vogt MA, Lembrich B, Natsagdorj R, Huber G, Brands J, Schmidt K, Assmann JC, Stölting I, Saar K, Sedlacik J, Fiehler J, Ludewig P, Wegmann M, Feller N, Richter M, Müller-Fielitz H, Walther T, König GM, Kostenis E, Raasch W, Hübner N, Gass P, Offermanns S, de Wit C, Wagner CA, Schwaninger M. Impaired endothelium-mediated cerebrovascular reactivity promotes anxiety and respiration disorders in mice. Proc Natl Acad Sci U S A 2020;117:1753-61. [PMID: 31896584 DOI: 10.1073/pnas.1907467117] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 7.0] [Reference Citation Analysis]
34 Yang R, Li Z, Zou Y, Yang J, Li L, Xu X, Schmalzing G, Nie H, Li G, Liu S, Liang S, Xu C. Gallic Acid Alleviates Neuropathic Pain Behaviors in Rats by Inhibiting P2X7 Receptor-Mediated NF-κB/STAT3 Signaling Pathway. Front Pharmacol 2021;12:680139. [PMID: 34512324 DOI: 10.3389/fphar.2021.680139] [Reference Citation Analysis]
35 Pfaffenzeller MS, Franciosi MLM, Cardoso AM. Purinergic signaling and tumor microenvironment in cervical Cancer. Purinergic Signal 2020;16:123-35. [PMID: 32170538 DOI: 10.1007/s11302-020-09693-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
36 Engel T, Sperlagh B. Purinergic signaling as a target for emerging neurotherapeutics. Brain Res Bull 2019;151:1-2. [PMID: 31163189 DOI: 10.1016/j.brainresbull.2019.05.022] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
37 Zhou Z, Matsumoto T, Jankowski V, Pernow J, Mustafa SJ, Duncker DJ, Merkus D. Uridine adenosine tetraphosphate and purinergic signaling in cardiovascular system: An update. Pharmacol Res 2019;141:32-45. [PMID: 30553823 DOI: 10.1016/j.phrs.2018.12.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 3.0] [Reference Citation Analysis]
38 Dosch M, Gerber J, Jebbawi F, Beldi G. Mechanisms of ATP Release by Inflammatory Cells. Int J Mol Sci 2018;19:E1222. [PMID: 29669994 DOI: 10.3390/ijms19041222] [Cited by in Crossref: 81] [Cited by in F6Publishing: 80] [Article Influence: 20.3] [Reference Citation Analysis]
39 Hu QQ, He XF, Ma YQ, Ma LQ, Qu SY, Wang HZ, Kang YR, Chen LH, Li X, Liu BY, Shao XM, Fang JF, Liang Y, Fang JQ, Jiang YL. Dorsal root ganglia P2X4 and P2X7 receptors contribute to diabetes-induced hyperalgesia and the downregulation of electroacupuncture on P2X4 and P2X7. Purinergic Signal 2022. [PMID: 35218450 DOI: 10.1007/s11302-022-09844-8] [Reference Citation Analysis]
40 Calzaferri F, Ruiz-Ruiz C, de Diego AMG, de Pascual R, Méndez-López I, Cano-Abad MF, Maneu V, de Los Ríos C, Gandía L, García AG. The purinergic P2X7 receptor as a potential drug target to combat neuroinflammation in neurodegenerative diseases. Med Res Rev 2020;40:2427-65. [PMID: 32677086 DOI: 10.1002/med.21710] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
41 Peng L, Wu B, Shi L, Zou L, Li L, Yang R, Xu X, Li G, Liu S, Zhang C, Liang S. Long Non-coding RNA Uc.48+ Small Interfering RNA Alleviates Neuroinflammatory Hyperalgesia in Gp120-Treated Rats via the P2Y12 Receptor. Front Neurosci 2021;15:663962. [PMID: 34326715 DOI: 10.3389/fnins.2021.663962] [Reference Citation Analysis]
42 Reichert KP, Castro MFV, Assmann CE, Bottari NB, Miron VV, Cardoso A, Stefanello N, Morsch VMM, Schetinger MRC. Diabetes and hypertension: Pivotal involvement of purinergic signaling. Biomed Pharmacother 2021;137:111273. [PMID: 33524787 DOI: 10.1016/j.biopha.2021.111273] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
43 Zhou Y, Tan CY, Mo ZJ, Gao QL, He D, Li J, Huang RF, Li YB, Guo CF, Guo Q, Wang LJ, Yang GT, Zhang HQ. P2X7 receptor in spinal tuberculosis: Gene polymorphisms and protein levels in Chinese Han population. Infect Genet Evol 2018;57:138-44. [PMID: 29158203 DOI: 10.1016/j.meegid.2017.11.020] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
44 Mihara H, Uchida K, Koizumi S, Moriyama Y. Involvement of VNUT-exocytosis in transient receptor potential vanilloid 4-dependent ATP release from gastrointestinal epithelium. PLoS One 2018;13:e0206276. [PMID: 30365528 DOI: 10.1371/journal.pone.0206276] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
45 Pustovit KB, Potekhina VM, Ivanova AD, Petrov AM, Abramochkin DV, Kuzmin VS. Extracellular ATP and β-NAD alter electrical properties and cholinergic effects in the rat heart in age-specific manner. Purinergic Signal 2019;15:107-17. [PMID: 30756226 DOI: 10.1007/s11302-019-09645-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
46 Huang L, Otrokocsi L, Sperlágh B. Role of P2 receptors in normal brain development and in neurodevelopmental psychiatric disorders. Brain Res Bull 2019;151:55-64. [PMID: 30721770 DOI: 10.1016/j.brainresbull.2019.01.030] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
47 Gonzaga DTG, Oliveira FH, von Ranke NL, Pinho GQ, Salles JP, Bello ML, Rodrigues CR, Castro HC, de Souza HVCM, Reis CRC, Leme RPP, Mafra JCM, Pinheiro LCS, Hoelz LVB, Boechat N, Faria RX. Synthesis, Biological Evaluation, and Molecular Modeling Studies of New Thiadiazole Derivatives as Potent P2X7 Receptor Inhibitors. Front Chem 2019;7:261. [PMID: 31134177 DOI: 10.3389/fchem.2019.00261] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 1.7] [Reference Citation Analysis]
48 Communi D, Horckmans M, Boeynaems JM. P2Y4, P2Y6 and P2Y11 receptors: From the early days of cloning to their function. Biochem Pharmacol 2021;187:114347. [PMID: 33232731 DOI: 10.1016/j.bcp.2020.114347] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
49 Jacobson KA, Salmaso V, Suresh RR, Tosh DK. Expanding the repertoire of methanocarba nucleosides from purinergic signaling to diverse targets. RSC Med Chem 2021;12:1808-25. [PMID: 34825182 DOI: 10.1039/d1md00167a] [Reference Citation Analysis]
50 Zhang X, Du P, Luo K, Li Y, Liu Z, Wang W, Zeng C, Ye Q, Xiao Q. Hypoxia-inducible factor-1alpha protects the liver against ischemia-reperfusion injury by regulating the A2B adenosine receptor. Bioengineered 2021;12:3737-52. [PMID: 34288817 DOI: 10.1080/21655979.2021.1953217] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
51 Gubert C, Andrejew R, Leite CE, Moritz CEJ, Scholl J, Figueiro F, Kapczinski F, da Silva Magalhães PV, Battastini AMO. P2X7 Purinergic Receptor Is Involved in the Pathophysiology of Mania: a Preclinical Study. Mol Neurobiol 2020;57:1347-60. [PMID: 31729632 DOI: 10.1007/s12035-019-01817-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
52 Pasqualetto G, Brancale A, Young MT. The Molecular Determinants of Small-Molecule Ligand Binding at P2X Receptors. Front Pharmacol 2018;9:58. [PMID: 29456508 DOI: 10.3389/fphar.2018.00058] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 5.3] [Reference Citation Analysis]
53 Lu R, Zhang Z, Jiang C. Recent progress on the discovery of P2Y14 receptor antagonists. Eur J Med Chem 2019;175:34-9. [PMID: 31071548 DOI: 10.1016/j.ejmech.2019.04.068] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 3.7] [Reference Citation Analysis]
54 Adebiyi MG, Manalo J, Kellems RE, Xia Y. Differential role of adenosine signaling cascade in acute and chronic pain. Neurosci Lett 2019;712:134483. [PMID: 31494223 DOI: 10.1016/j.neulet.2019.134483] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
55 Kropotov A, Kulikova V, Nerinovski K, Yakimov A, Svetlova M, Solovjeva L, Sudnitsyna J, Migaud ME, Khodorkovskiy M, Ziegler M, Nikiforov A. Equilibrative Nucleoside Transporters Mediate the Import of Nicotinamide Riboside and Nicotinic Acid Riboside into Human Cells. Int J Mol Sci 2021;22:1391. [PMID: 33573263 DOI: 10.3390/ijms22031391] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
56 Jewell JB, Sowders JM, He R, Willis MA, Gang DR, Tanaka K. Extracellular ATP Shapes a Defense-Related Transcriptome Both Independently and along with Other Defense Signaling Pathways. Plant Physiol 2019;179:1144-58. [PMID: 30630869 DOI: 10.1104/pp.18.01301] [Cited by in Crossref: 28] [Cited by in F6Publishing: 30] [Article Influence: 9.3] [Reference Citation Analysis]
57 Scarpellino G, Genova T, Munaron L. Purinergic P2X7 Receptor: A Cation Channel Sensitive to Tumor Microenvironment. PRA 2019;14:32-8. [DOI: 10.2174/1574892814666190116122256] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
58 Bruno A, Dovizio M, Tacconelli S, Contursi A, Ballerini P, Patrignani P. Antithrombotic Agents and Cancer. Cancers (Basel) 2018;10:E253. [PMID: 30065215 DOI: 10.3390/cancers10080253] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
59 Li L, Yang J, Liu B, Zou Y, Sun M, Li Z, Yang R, Xu X, Zou L, Li G, Liu S, Li G, Liang S. P2Y12 shRNA normalizes inflammatory dysfunctional hepatic glucokinase activity in type 2 diabetic rats. Biomed Pharmacother 2020;132:110803. [PMID: 33017768 DOI: 10.1016/j.biopha.2020.110803] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
60 Zhang Y, Ecelbarger CM, Lesniewski LA, Müller CE, Kishore BK. P2Y2 Receptor Promotes High-Fat Diet-Induced Obesity. Front Endocrinol (Lausanne) 2020;11:341. [PMID: 32582029 DOI: 10.3389/fendo.2020.00341] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
61 Wu YY, Zhang HL, Lu X, Du H, Li YC, Zhang PA, Xu GY. Targeting GATA1 and p2x7r Locus Binding in Spinal Astrocytes Suppresses Chronic Visceral Pain by Promoting DNA Demethylation. Neurosci Bull 2021. [PMID: 34890016 DOI: 10.1007/s12264-021-00799-1] [Reference Citation Analysis]
62 Zarrinmayeh H, Territo PR. Purinergic Receptors of the Central Nervous System: Biology, PET Ligands, and Their Applications. Mol Imaging 2020;19:1536012120927609. [PMID: 32539522 DOI: 10.1177/1536012120927609] [Cited by in Crossref: 14] [Cited by in F6Publishing: 10] [Article Influence: 14.0] [Reference Citation Analysis]
63 Lu R, Wang Y, Liu C, Zhang Z, Li B, Meng Z, Jiang C, Hu Q. Design, synthesis and evaluation of 3-amide-5-aryl benzoic acid derivatives as novel P2Y14R antagonists with potential high efficiency against acute gouty arthritis. Eur J Med Chem 2021;216:113313. [PMID: 33667846 DOI: 10.1016/j.ejmech.2021.113313] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
64 Kubisa MJ, Jezewski MP, Gasecka A, Siller-Matula JM, Postuła M. Ticagrelor - toward more efficient platelet inhibition and beyond. Ther Clin Risk Manag 2018;14:129-40. [PMID: 29398917 DOI: 10.2147/TCRM.S152369] [Cited by in Crossref: 31] [Cited by in F6Publishing: 23] [Article Influence: 7.8] [Reference Citation Analysis]
65 Tan SW, Li P, Ning YL, Zhao Y, Yang N, Zhou YG. A novel method for detecting heteromeric complexes at synaptic level by combining a modified method of proximity ligation assay with transmission electron microscopy. Neurochem Int 2021;149:105145. [PMID: 34324942 DOI: 10.1016/j.neuint.2021.105145] [Reference Citation Analysis]
66 Appy L, Chardet C, Peyrottes S, Roy B. Synthetic Strategies for Dinucleotides Synthesis. Molecules 2019;24:E4334. [PMID: 31783537 DOI: 10.3390/molecules24234334] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
67 Gülke E, Gelderblom M, Magnus T. Danger signals in stroke and their role on microglia activation after ischemia. Ther Adv Neurol Disord 2018;11:1756286418774254. [PMID: 29854002 DOI: 10.1177/1756286418774254] [Cited by in Crossref: 73] [Cited by in F6Publishing: 70] [Article Influence: 18.3] [Reference Citation Analysis]
68 Davenport AJ, Neagoe I, Bräuer N, Koch M, Rotgeri A, Nagel J, Laux-Biehlmann A, Machet F, Coelho AM, Boyce S, Carty N, Gemkow MJ, Hess SD, Zollner TM, Fischer OM. Eliapixant is a selective P2X3 receptor antagonist for the treatment of disorders associated with hypersensitive nerve fibers. Sci Rep 2021;11:19877. [PMID: 34615939 DOI: 10.1038/s41598-021-99177-0] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
69 Mihara H, Boudaka A, Tominaga M, Sugiyama T. Transient Receptor Potential Vanilloid 4 Regulation of Adenosine Triphosphate Release by the Adenosine Triphosphate Transporter Vesicular Nucleotide Transporter, a Novel Therapeutic Target for Gastrointestinal Baroreception and Chronic Inflammation. Digestion. 2020;101:6-11. [PMID: 31770754 DOI: 10.1159/000504021] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
70 Boknik P, Eskandar J, Hofmann B, Zimmermann N, Neumann J, Gergs U. Role of Cardiac A2A Receptors Under Normal and Pathophysiological Conditions. Front Pharmacol 2020;11:627838. [PMID: 33574762 DOI: 10.3389/fphar.2020.627838] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
71 Deganutti G, Barkan K, Preti B, Leuenberger M, Wall M, Frenguelli BG, Lochner M, Ladds G, Reynolds CA. Deciphering the Agonist Binding Mechanism to the Adenosine A1 Receptor. ACS Pharmacol Transl Sci 2021;4:314-26. [PMID: 33615181 DOI: 10.1021/acsptsci.0c00195] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
72 Sagrillo-Fagundes L, Casagrande Paim T, Pretto L, Bertaco I, Zanatelli C, Vaillancourt C, Wink MR. The implications of the purinergic signaling throughout pregnancy. J Cell Physiol 2021. [PMID: 34596240 DOI: 10.1002/jcp.30594] [Reference Citation Analysis]
73 Zhao S, Zhou Y, Fan Y, Gong Y, Yang J, Yang R, Li L, Zou L, Xu X, Li G, Liu S, Zhang C, Li G, Liang S. Involvement of purinergic 2X4 receptor in glycoprotein 120-induced pyroptosis in dorsal root ganglia. J Neurochem 2019;151:584-94. [PMID: 31418825 DOI: 10.1111/jnc.14850] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
74 Storme J, Tosh DK, Gao ZG, Jacobson KA, Stove CP. Probing structure-activity relationship in β-arrestin2 recruitment of diversely substituted adenosine derivatives. Biochem Pharmacol 2018;158:103-13. [PMID: 30292756 DOI: 10.1016/j.bcp.2018.10.003] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
75 Metryka E, Gutowska I, Kupnicka P, Tarnowski M, Tkacz M, Listos J, Talarek S, Barczak K, Chlubek D, Baranowska-Bosiacka I. ‬The expression of purinergic P2X4 and P2X7 receptors in selected mesolimbic structures during morphine withdrawal in rats. Brain Res 2019;1719:49-56. [PMID: 31121160 DOI: 10.1016/j.brainres.2019.05.025] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
76 Villanueva-Castillo B, Rivera-Mancilla E, Haanes KA, MaassenVanDenBrink A, Villalón CM. The role of purinergic P2Y12 and P2Y13 receptors in ADPβS-induced inhibition of the cardioaccelerator sympathetic drive in pithed rats. Purinergic Signal 2020;16:73-84. [PMID: 32067141 DOI: 10.1007/s11302-020-09689-z] [Reference Citation Analysis]
77 Jasmer KJ, Woods LT, Forti KM, Martin AL, Camden JM, Colonna M, Weisman GA. P2Y2 receptor antagonism resolves sialadenitis and improves salivary flow in a Sjögren's syndrome mouse model. Arch Oral Biol 2021;124:105067. [PMID: 33561807 DOI: 10.1016/j.archoralbio.2021.105067] [Reference Citation Analysis]
78 Shen JB, Toti KS, Chakraborty S, Kumar TS, Cronin C, Liang BT, Jacobson KA. Prevention and rescue of cardiac dysfunction by methanocarba adenosine monophosphonate derivatives. Purinergic Signal 2020;16:61-72. [PMID: 31989534 DOI: 10.1007/s11302-020-09688-0] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
79 Dane C, Stokes L, Jorgensen WT. P2X Receptor Antagonists and their Potential as Therapeutics: a patent review (2010 - 2021). Expert Opin Ther Pat 2022. [PMID: 35443137 DOI: 10.1080/13543776.2022.2069010] [Reference Citation Analysis]
80 Li SH, Li L, Yang RN, Liang SD. Compounds of traditional Chinese medicine and neuropathic pain. Chin J Nat Med 2020;18:28-35. [PMID: 31955821 DOI: 10.1016/S1875-5364(20)30002-9] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
81 Nadeali Z, Rezaei FM, Aria H, Nikpour P. Possible role of pannexin 1 channels and purinergic receptors in the pathogenesis and mechanism of action of SARS-CoV-2 and therapeutic potential of targeting them in COVID-19. Life Sciences 2022. [DOI: 10.1016/j.lfs.2022.120482] [Reference Citation Analysis]
82 Cieślak M, Wojtczak A. Role of purinergic receptors in the Alzheimer's disease. Purinergic Signal 2018;14:331-44. [PMID: 30362042 DOI: 10.1007/s11302-018-9629-0] [Cited by in Crossref: 32] [Cited by in F6Publishing: 31] [Article Influence: 8.0] [Reference Citation Analysis]
83 Zeng Y, Luo H, Gao Z, Zhu X, Shen Y, Li Y, Hu J, Yang J. Reduction of prefrontal purinergic signaling is necessary for the analgesic effect of morphine. iScience 2021;24:102213. [PMID: 33733073 DOI: 10.1016/j.isci.2021.102213] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
84 Eberhardt N, Bergero G, Mazzocco Mariotta YL, Aoki MP. Purinergic modulation of the immune response to infections. Purinergic Signal 2022. [PMID: 34997903 DOI: 10.1007/s11302-021-09838-y] [Reference Citation Analysis]
85 Van Campenhout R, Gomes AR, De Groof TWM, Muyldermans S, Devoogdt N, Vinken M. Mechanisms Underlying Connexin Hemichannel Activation in Disease. Int J Mol Sci 2021;22:3503. [PMID: 33800706 DOI: 10.3390/ijms22073503] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
86 Zhou M, Wang W, Li Y, Zhang Q, Ji H, Li H, Hu Q. The role of P2Y6R in cardiovascular diseases and recent development of P2Y6R antagonists. Drug Discov Today 2020;25:568-73. [PMID: 31926135 DOI: 10.1016/j.drudis.2019.12.015] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
87 Mishra A, Behura A, Kumar A, Naik L, Swain A, Das M, Sarangi SS, Dokania P, Dirisala VR, Bhutia SK, Mishra A, Singh R, Dhiman R. P2X7 receptor in multifaceted cellular signalling and its relevance as a potential therapeutic target in different diseases. Eur J Pharmacol 2021;906:174235. [PMID: 34097884 DOI: 10.1016/j.ejphar.2021.174235] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
88 de Lima AC, Chaves LM, Prestes SN, Mânica A, Cardoso AM. The purinergic signalling and inflammation in the pathogenesis and progression of diabetes: key factors and therapeutic targets. Inflamm Res 2022. [PMID: 35648156 DOI: 10.1007/s00011-022-01587-x] [Reference Citation Analysis]
89 Tsiampali J, Neumann S, Giesen B, Koch K, Maciaczyk D, Janiak C, Hänggi D, Maciaczyk J. Enzymatic Activity of CD73 Modulates Invasion of Gliomas via Epithelial-Mesenchymal Transition-Like Reprogramming. Pharmaceuticals (Basel) 2020;13:E378. [PMID: 33187081 DOI: 10.3390/ph13110378] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
90 Cano-Martínez A, Bautista-Pérez R, Castrejón-Téllez V, Carreón-Torres E, Pérez-Torres I, Díaz-Díaz E, Flores-Estrada J, Guarner-Lans V, Rubio-Ruíz ME. Resveratrol and Quercetin as Regulators of Inflammatory and Purinergic Receptors to Attenuate Liver Damage Associated to Metabolic Syndrome. Int J Mol Sci 2021;22:8939. [PMID: 34445644 DOI: 10.3390/ijms22168939] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
91 Stoddart LA, Kilpatrick LE, Corriden R, Kellam B, Briddon SJ, Hill SJ. Efficient G protein coupling is not required for agonist-mediated internalization and membrane reorganization of the adenosine A3 receptor. FASEB J 2021;35:e21211. [PMID: 33710641 DOI: 10.1096/fj.202001729RR] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
92 Deganutti G, Barkan K, Ladds G, Reynolds CA. Multisite Model of Allosterism for the Adenosine A1 Receptor. J Chem Inf Model 2021;61:2001-15. [PMID: 33779168 DOI: 10.1021/acs.jcim.0c01331] [Reference Citation Analysis]
93 Shan L, Jiang T, Ci L, Liu Z, Lv X, Li J. Purine signaling regulating HSCs inflammatory cytokines secretion, activation, and proliferation plays a critical role in alcoholic liver disease. Mol Cell Biochem 2020;466:91-102. [PMID: 31989367 DOI: 10.1007/s11010-020-03691-0] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
94 Tchetina EV, Markova GA, Sharapova EP. Insulin Resistance in Osteoarthritis: Similar Mechanisms to Type 2 Diabetes Mellitus. J Nutr Metab 2020;2020:4143802. [PMID: 32566279 DOI: 10.1155/2020/4143802] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
95 Dragić M, Mitrović N, Adžić M, Nedeljković N, Grković I. Microglial- and Astrocyte-Specific Expression of Purinergic Signaling Components and Inflammatory Mediators in the Rat Hippocampus During Trimethyltin-Induced Neurodegeneration. ASN Neuro 2021;13:17590914211044882. [PMID: 34569324 DOI: 10.1177/17590914211044882] [Reference Citation Analysis]
96 Vandier C, Velge-Roussel F. Regulation of human dendritic cell immune functions by ion channels. Curr Opin Immunol 2018;52:27-31. [PMID: 29574094 DOI: 10.1016/j.coi.2018.03.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
97 Dal Ben D, Antonioli L, Lambertucci C, Fornai M, Blandizzi C, Volpini R. Purinergic Ligands as Potential Therapeutic Tools for the Treatment of Inflammation-Related Intestinal Diseases. Front Pharmacol 2018;9:212. [PMID: 29593540 DOI: 10.3389/fphar.2018.00212] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
98 Kutryb-Zajac B, Mierzejewska P, Slominska EM, Smolenski RT. Therapeutic Perspectives of Adenosine Deaminase Inhibition in Cardiovascular Diseases. Molecules 2020;25:E4652. [PMID: 33053898 DOI: 10.3390/molecules25204652] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
99 Domercq M, Zabala A, Matute C. Purinergic receptors in multiple sclerosis pathogenesis. Brain Res Bull 2019;151:38-45. [PMID: 30500565 DOI: 10.1016/j.brainresbull.2018.11.018] [Cited by in Crossref: 15] [Cited by in F6Publishing: 14] [Article Influence: 3.8] [Reference Citation Analysis]
100 Bragança B, Correia-de-Sá P. Resolving the Ionotropic P2X4 Receptor Mystery Points Towards a New Therapeutic Target for Cardiovascular Diseases. Int J Mol Sci 2020;21:E5005. [PMID: 32679900 DOI: 10.3390/ijms21145005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
101 Morgan J, Alves M, Conte G, Menéndez-Méndez A, de Diego-Garcia L, de Leo G, Beamer E, Smith J, Nicke A, Engel T. Characterization of the Expression of the ATP-Gated P2X7 Receptor Following Status Epilepticus and during Epilepsy Using a P2X7-EGFP Reporter Mouse. Neurosci Bull 2020;36:1242-58. [PMID: 32895896 DOI: 10.1007/s12264-020-00573-9] [Cited by in Crossref: 7] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
102 Schrank S, Barrington N, Stutzmann GE. Calcium-Handling Defects and Neurodegenerative Disease. Cold Spring Harb Perspect Biol. 2020;12. [PMID: 31427373 DOI: 10.1101/cshperspect.a035212] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 6.0] [Reference Citation Analysis]
103 Volonté C, Amadio S, Liguori F, Fabbrizio P. Duality of P2X7 Receptor in Amyotrophic Lateral Sclerosis. Front Pharmacol 2020;11:1148. [PMID: 32792962 DOI: 10.3389/fphar.2020.01148] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
104 Aluko OM, Umukoro S. Role of purinergic signaling pathways in the adaptogenic-like activity of methyl jasmonate in rats exposed to unpredictable chronic mild stress. Drug Metab Pers Ther 2020:/j/dmdi. [PMID: 32697752 DOI: 10.1515/dmdi-2020-0117] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
105 Gheler FV, Cappellari AR, Renck D, de Souza JB, de Melo RO, Moehlecke BZ, Moriguchi CA, Engroff P, Lambert APF, Rockenbach L, Morrone FB. AMP hydrolysis reduction in blood plasma of breast cancer elderly patients after different treatments. Mol Cell Biochem 2021. [PMID: 34089473 DOI: 10.1007/s11010-021-04199-x] [Reference Citation Analysis]
106 Pacheco PAF, Diogo RT, Magalhães BQ, Faria RX. Plant natural products as source of new P2 receptors ligands. Fitoterapia 2020;146:104709. [DOI: 10.1016/j.fitote.2020.104709] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
107 Lin J, Zhang YY, Liu F, Fang XY, Liu MK, Huang CL, Wang H, Liao DQ, Zhou C, Shen JF. The P2Y14 receptor in the trigeminal ganglion contributes to the maintenance of inflammatory pain. Neurochem Int 2019;131:104567. [PMID: 31586590 DOI: 10.1016/j.neuint.2019.104567] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
108 Du D, Zhou Z, Zhu L, Hu X, Lu J, Shi C, Chen F, Chen A. TNF-α suppresses osteogenic differentiation of MSCs by accelerating P2Y2 receptor in estrogen-deficiency induced osteoporosis. Bone 2018;117:161-70. [PMID: 30236554 DOI: 10.1016/j.bone.2018.09.012] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
109 Lin J, Wu C, Ma D, Hu Q. Identification of P2RY13 as an immune-related prognostic biomarker in lung adenocarcinoma: A public database-based retrospective study. PeerJ 2021;9:e11319. [PMID: 33996281 DOI: 10.7717/peerj.11319] [Reference Citation Analysis]
110 Pietrangelo T, Di Filippo ES, Locatelli M, Piacenza F, Farina M, Pavoni E, Di Donato A, Innosa D, Provinciali M, Fulle S. Extracellular Guanosine 5'-Triphosphate Induces Human Muscle Satellite Cells to Release Exosomes Stuffed With Guanosine. Front Pharmacol 2018;9:152. [PMID: 29615899 DOI: 10.3389/fphar.2018.00152] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
111 Pastor-Anglada M, Pérez-Torras S. Who Is Who in Adenosine Transport. Front Pharmacol 2018;9:627. [PMID: 29962948 DOI: 10.3389/fphar.2018.00627] [Cited by in Crossref: 47] [Cited by in F6Publishing: 46] [Article Influence: 11.8] [Reference Citation Analysis]
112 Vaisitti T, Arruga F, Guerra G, Deaglio S. Ectonucleotidases in Blood Malignancies: A Tale of Surface Markers and Therapeutic Targets. Front Immunol 2019;10:2301. [PMID: 31636635 DOI: 10.3389/fimmu.2019.02301] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
113 Pinna A, Serra M, Morelli M, Simola N. Role of adenosine A2A receptors in motor control: relevance to Parkinson's disease and dyskinesia. J Neural Transm (Vienna) 2018;125:1273-86. [PMID: 29396609 DOI: 10.1007/s00702-018-1848-6] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
114 Homerin G, Jawhara S, Dezitter X, Baudelet D, Dufrénoy P, Rigo B, Millet R, Furman C, Ragé G, Lipka E, Farce A, Renault N, Sendid B, Charlet R, Leroy J, Phanithavong M, Richeval C, Wiart JF, Allorge D, Adriouch S, Vouret-Craviari V, Ghinet A. Pyroglutamide-Based P2X7 Receptor Antagonists Targeting Inflammatory Bowel Disease. J Med Chem 2020;63:2074-94. [PMID: 31525963 DOI: 10.1021/acs.jmedchem.9b00584] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
115 Scarpellino G, Genova T, Avanzato D, Bernardini M, Bianco S, Petrillo S, Tolosano E, de Almeida Vieira JR, Bussolati B, Fiorio Pla A, Munaron L. Purinergic Calcium Signals in Tumor-Derived Endothelium. Cancers (Basel) 2019;11:E766. [PMID: 31159426 DOI: 10.3390/cancers11060766] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
116 Witzler M, Ottensmeyer PF, Gericke M, Heinze T, Tobiasch E, Schulze M. Non-Cytotoxic Agarose/Hydroxyapatite Composite Scaffolds for Drug Release. Int J Mol Sci 2019;20:E3565. [PMID: 31330875 DOI: 10.3390/ijms20143565] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 4.7] [Reference Citation Analysis]
117 Coppi E, Cherchi F, Lucarini E, Ghelardini C, Pedata F, Jacobson KA, Di Cesare Mannelli L, Pugliese AM, Salvemini D. Uncovering the Mechanisms of Adenosine Receptor-Mediated Pain Control: Focus on the A3 Receptor Subtype. Int J Mol Sci 2021;22:7952. [PMID: 34360719 DOI: 10.3390/ijms22157952] [Reference Citation Analysis]
118 Khalafalla MG, Woods LT, Jasmer KJ, Forti KM, Camden JM, Jensen JL, Limesand KH, Galtung HK, Weisman GA. P2 Receptors as Therapeutic Targets in the Salivary Gland: From Physiology to Dysfunction. Front Pharmacol 2020;11:222. [PMID: 32231563 DOI: 10.3389/fphar.2020.00222] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
119 Jacobson KA, IJzerman AP, Müller CE. Medicinal chemistry of P2 and adenosine receptors: Common scaffolds adapted for multiple targets. Biochem Pharmacol 2021;187:114311. [PMID: 33130128 DOI: 10.1016/j.bcp.2020.114311] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 3.5] [Reference Citation Analysis]
120 Cao F, Hu LQ, Yao SR, Hu Y, Wang DG, Fan YG, Pan GX, Tao SS, Zhang Q, Pan HF, Wu GC. P2X7 receptor: A potential therapeutic target for autoimmune diseases. Autoimmun Rev 2019;18:767-77. [PMID: 31181327 DOI: 10.1016/j.autrev.2019.06.009] [Cited by in Crossref: 27] [Cited by in F6Publishing: 29] [Article Influence: 9.0] [Reference Citation Analysis]
121 Simard T, Jung R, Labinaz A, Faraz MA, Ramirez FD, Di Santo P, Pitcher I, Motazedian P, Gaudet C, Rochman R, Marbach J, Boland P, Sarathy K, Alghofaili S, Russo JJ, Couture E, Beanlands RS, Hibbert B. Adenosine as a Marker and Mediator of Cardiovascular Homeostasis: A Translational Perspective. CHDDT 2019;19:109-31. [DOI: 10.2174/1871529x18666181011103719] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
122 Saliu JA, Oyeleye SI, Olasehinde TA, Oboh G. Modulatory effects of stonebreaker ( Phyllanthus amarus ) and bitter gourd ( Momordica charantia ) on enzymes linked with cardiac function in heart tissue of doxorubicin-stressed rats. Drug and Chemical Toxicology. [DOI: 10.1080/01480545.2019.1700271] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
123 Salmaso V, Jacobson KA. In Silico Drug Design for Purinergic GPCRs: Overview on Molecular Dynamics Applied to Adenosine and P2Y Receptors. Biomolecules 2020;10:E812. [PMID: 32466404 DOI: 10.3390/biom10060812] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
124 Berg A, Sperl B, Berg T. ATP Inhibits the Transcription Factor STAT5b. Chembiochem 2019;20:2227-31. [PMID: 30985989 DOI: 10.1002/cbic.201900173] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
125 Rochette L, Meloux A, Rigal E, Zeller M, Malka G, Cottin Y, Vergely C. The Role of Osteoprotegerin in Vascular Calcification and Bone Metabolism: The Basis for Developing New Therapeutics. Calcif Tissue Int 2019;105:239-51. [PMID: 31197415 DOI: 10.1007/s00223-019-00573-6] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 5.3] [Reference Citation Analysis]
126 Jacobson KA, Reitman ML. Adenosine-Related Mechanisms in Non-Adenosine Receptor Drugs. Cells 2020;9:E956. [PMID: 32295065 DOI: 10.3390/cells9040956] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
127 Ratajczak MZ, Adamiak M, Bujko K, Thapa A, Pensato V, Kucia M, Ratajczak J, Ulrich H. Innate immunity orchestrates the mobilization and homing of hematopoietic stem/progenitor cells by engaging purinergic signaling-an update. Purinergic Signal 2020;16:153-66. [PMID: 32415576 DOI: 10.1007/s11302-020-09698-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
128 Thompson RJ, Sayers I, Kuokkanen K, Hall IP. Purinergic Receptors in the Airways: Potential Therapeutic Targets for Asthma? Front Allergy 2021;2:677677. [DOI: 10.3389/falgy.2021.677677] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
129 Pal Y, Bandyopadhyay N, Pal RS, Ahmed S, Bandopadhyay S. Perspective and Potential of A2A and A3 Adenosine Receptors as Therapeutic Targets for the Treatment of Rheumatoid Arthritis. CPD 2019;25:2859-74. [DOI: 10.2174/1381612825666190710111658] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
130 Burnstock G. Introduction to Purinergic Signaling. Methods Mol Biol 2020;2041:1-15. [PMID: 31646477 DOI: 10.1007/978-1-4939-9717-6_1] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
131 Corciulo C, Cronstein BN. Signaling of the Purinergic System in the Joint. Front Pharmacol 2019;10:1591. [PMID: 32038258 DOI: 10.3389/fphar.2019.01591] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
132 Qin L, Li Q, Li J. Heat treatment improves the exaggerated exercise pressor reflex in rats with femoral artery occlusion via a reduction in the activity of the P2X receptor pathway. J Physiol 2020;598:1491-503. [PMID: 32052864 DOI: 10.1113/JP279230] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
133 Herman-de-Sousa C, Pinheiro AR, Paramos-de-Carvalho D, Costa MA, Ferreirinha F, Magalhães-Cardoso T, Ribeiro S, Pelletier J, Sévigny J, Correia-de-Sá P. Opposing Effects of Adenosine and Inosine in Human Subcutaneous Fibroblasts May Be Regulated by Third Party ADA Cell Providers. Cells 2020;9:E651. [PMID: 32156055 DOI: 10.3390/cells9030651] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
134 Yoshida K, Tajima M, Nagano T, Obayashi K, Ito M, Yamamoto K, Matsuoka I. Co-Stimulation of Purinergic P2X4 and Prostanoid EP3 Receptors Triggers Synergistic Degranulation in Murine Mast Cells. Int J Mol Sci 2019;20:E5157. [PMID: 31627451 DOI: 10.3390/ijms20205157] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
135 Kwon K, Hwang Y, Jung J, Tae G. Enhanced Transport and Permeation of a Polymeric Nanocarrier across the Retina by Mixing with ATP upon Intravitreal Injection. Pharmaceutics 2021;13:463. [PMID: 33805533 DOI: 10.3390/pharmaceutics13040463] [Reference Citation Analysis]
136 Bano S, Shabir G, Saeed A, Ul-Hamid A, Alharthy RD, Iqbal J. Synthesis, characterization and biological evaluation of indomethacin derived thioureas as purinergic (P2Y1, P2Y2, P2Y4, and P2Y6) receptor antagonists. Bioorg Chem 2021;116:105378. [PMID: 34601296 DOI: 10.1016/j.bioorg.2021.105378] [Reference Citation Analysis]
137 Van Campenhout R, Muyldermans S, Vinken M, Devoogdt N, De Groof TWM. Therapeutic Nanobodies Targeting Cell Plasma Membrane Transport Proteins: A High-Risk/High-Gain Endeavor. Biomolecules 2021;11:63. [PMID: 33418902 DOI: 10.3390/biom11010063] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
138 Calvo-Rodriguez M, Kharitonova EK, Bacskai BJ. Therapeutic Strategies to Target Calcium Dysregulation in Alzheimer's Disease. Cells 2020;9:E2513. [PMID: 33233678 DOI: 10.3390/cells9112513] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
139 Martín A, Domercq M, Matute C. Inflammation in stroke: the role of cholinergic, purinergic and glutamatergic signaling. Ther Adv Neurol Disord 2018;11:1756286418774267. [PMID: 29774059 DOI: 10.1177/1756286418774267] [Cited by in Crossref: 16] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
140 Zhang Z, Hao K, Li H, Lu R, Liu C, Zhou M, Li B, Meng Z, Hu Q, Jiang C. Design, synthesis and anti-inflammatory evaluation of 3-amide benzoic acid derivatives as novel P2Y14 receptor antagonists. European Journal of Medicinal Chemistry 2019;181:111564. [DOI: 10.1016/j.ejmech.2019.111564] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
141 Battastini AMO, Figueiró F, Leal DBR, Doleski PH, Schetinger MRC. CD39 and CD73 as Promising Therapeutic Targets: What Could Be the Limitations? Front Pharmacol 2021;12:633603. [PMID: 33815115 DOI: 10.3389/fphar.2021.633603] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
142 Ottensmeyer PF, Witzler M, Schulze M, Tobiasch E. Small Molecules Enhance Scaffold-Based Bone Grafts via Purinergic Receptor Signaling in Stem Cells. Int J Mol Sci 2018;19:E3601. [PMID: 30441872 DOI: 10.3390/ijms19113601] [Cited by in Crossref: 13] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
143 Schrader J. Ectonucleotidases as bridge between the ATP and adenosine world: reflections on Geoffrey Burnstock. Purinergic Signal 2022. [PMID: 35522386 DOI: 10.1007/s11302-022-09862-6] [Reference Citation Analysis]
144 López-Cortés GI, Díaz-Alvarez L, Ortega E. Leukocyte Membrane Enzymes Play the Cell Adhesion Game. Front Immunol 2021;12:742292. [PMID: 34887854 DOI: 10.3389/fimmu.2021.742292] [Reference Citation Analysis]
145 Soave M, Goulding J, Markus R, Hill SJ, Stoddart LA. Application of Fluorescent Purinoceptor Antagonists for Bioluminescence Resonance Energy Transfer Assays and Fluorescent Microscopy. Methods Mol Biol 2020;2041:163-81. [PMID: 31646488 DOI: 10.1007/978-1-4939-9717-6_12] [Reference Citation Analysis]
146 Platania CBM, Lazzara F, Fidilio A, Fresta CG, Conti F, Giurdanella G, Leggio GM, Salomone S, Drago F, Bucolo C. Blood-retinal barrier protection against high glucose damage: The role of P2X7 receptor. Biochem Pharmacol 2019;168:249-58. [PMID: 31302133 DOI: 10.1016/j.bcp.2019.07.010] [Cited by in Crossref: 18] [Cited by in F6Publishing: 17] [Article Influence: 6.0] [Reference Citation Analysis]
147 Högel H, Rissanen E, Vuorimaa A, Airas L. Positron emission tomography imaging in evaluation of MS pathology in vivo. Mult Scler 2018;24:1399-412. [DOI: 10.1177/1352458518791680] [Cited by in Crossref: 15] [Cited by in F6Publishing: 12] [Article Influence: 3.8] [Reference Citation Analysis]
148 Wirsching E, Fauler M, Fois G, Frick M. P2 Purinergic Signaling in the Distal Lung in Health and Disease. Int J Mol Sci 2020;21:E4973. [PMID: 32674494 DOI: 10.3390/ijms21144973] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
149 Le Y, Lu D, Xue M. Purinergic signaling in thyroid disease. Purinergic Signal 2022. [PMID: 35347568 DOI: 10.1007/s11302-022-09858-2] [Reference Citation Analysis]
150 Jarvis MF. Therapeutic potential of adenosine kinase inhibition-Revisited. Pharmacol Res Perspect 2019;7:e00506. [PMID: 31367385 DOI: 10.1002/prp2.506] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
151 Müller CE, Baqi Y, Namasivayam V. Agonists and Antagonists for Purinergic Receptors. Methods Mol Biol 2020;2041:45-64. [PMID: 31646479 DOI: 10.1007/978-1-4939-9717-6_3] [Cited by in Crossref: 15] [Cited by in F6Publishing: 11] [Article Influence: 7.5] [Reference Citation Analysis]
152 Eberhardt N, Sanmarco LM, Bergero G, Theumer MG, García MC, Ponce NE, Cano RC, Aoki MP. Deficiency of CD73 activity promotes protective cardiac immunity against Trypanosoma cruzi infection but permissive environment in visceral adipose tissue. Biochim Biophys Acta Mol Basis Dis 2020;1866:165592. [PMID: 31678157 DOI: 10.1016/j.bbadis.2019.165592] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
153 Loesch A. On P2X receptors in the brain: microvessels. Dedicated to the memory of the late Professor Geoffrey Burnstock (1929-2020). Cell Tissue Res 2021;384:577-88. [PMID: 33755804 DOI: 10.1007/s00441-021-03411-0] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
154 Tao J, Liu L, Fan Y, Wang M, Li L, Zou L, Yuan H, Shi L, Yang R, Liang S, Liu S. Role of hesperidin in P2X3 receptor-mediated neuropathic pain in the dorsal root ganglia. Int J Neurosci 2019;129:784-93. [PMID: 30621504 DOI: 10.1080/00207454.2019.1567512] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
155 Wei ZY, Qu HL, Dai YJ, Wang Q, Ling ZM, Su WF, Zhao YY, Shen WX, Chen G. Pannexin 1, a large-pore membrane channel, contributes to hypotonicity-induced ATP release in Schwann cells. Neural Regen Res 2021;16:899-904. [PMID: 33229726 DOI: 10.4103/1673-5374.290911] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
156 Baqi Y, Müller CE. Antithrombotic P2Y12 receptor antagonists: recent developments in drug discovery. Drug Discov Today 2019;24:325-33. [PMID: 30291899 DOI: 10.1016/j.drudis.2018.09.021] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
157 Harris TH, Wallace MR, Huang H, Li H, Shaddox LM. Associations of P2RX7 Functional Diplotypes with Localized Aggressive Periodontitis. JDR Clin Trans Res 2019;4:342-51. [PMID: 31319038 DOI: 10.1177/2380084419863789] [Reference Citation Analysis]
158 Chen S, Shenk T, Nogalski MT. P2Y2 purinergic receptor modulates virus yield, calcium homeostasis, and cell motility in human cytomegalovirus-infected cells. Proc Natl Acad Sci U S A 2019;116:18971-82. [PMID: 31481624 DOI: 10.1073/pnas.1907562116] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
159 Luu R, Valdebenito S, Scemes E, Cibelli A, Spray DC, Rovegno M, Tichauer J, Cottignies-Calamarte A, Rosenberg A, Capron C, Belouzard S, Dubuisson J, Annane D, de la Grandmaison GL, Cramer-Bordé E, Bomsel M, Eugenin E. Pannexin-1 channel opening is critical for COVID-19 pathogenesis. iScience 2021;24:103478. [PMID: 34841222 DOI: 10.1016/j.isci.2021.103478] [Reference Citation Analysis]
160 Bomfim GHS, Musial DC, Miranda-ferreira R, Nascimento SR, Jurkiewicz A, Jurkiewicz NH, de Moura RS. Antihypertensive effects of the Vitis vinifera grape skin (ACH09) extract consumption elicited by functional improvement of P1 (A1) and P2 (P2X1) purinergic receptors in diabetic and hypertensive rats. PharmaNutrition 2019;8:100146. [DOI: 10.1016/j.phanu.2019.100146] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
161 Galgaro BC, Beckenkamp LR, van den M Nunnenkamp M, Korb VG, Naasani LIS, Roszek K, Wink MR. The adenosinergic pathway in mesenchymal stem cell fate and functions. Med Res Rev 2021;41:2316-49. [PMID: 33645857 DOI: 10.1002/med.21796] [Reference Citation Analysis]
162 Magni G, Ceruti S. Purines in Pain as a Gliopathy. Front Pharmacol 2021;12:649807. [PMID: 33790798 DOI: 10.3389/fphar.2021.649807] [Reference Citation Analysis]
163 Gonzalez-Cano R, Montilla-García Á, Perazzoli G, Torres JM, Cañizares FJ, Fernández-Segura E, Costigan M, Baeyens JM, Cobos EJ. Intracolonic Mustard Oil Induces Visceral Pain in Mice by TRPA1-Dependent and -Independent Mechanisms: Role of Tissue Injury and P2X Receptors. Front Pharmacol 2020;11:613068. [PMID: 33551815 DOI: 10.3389/fphar.2020.613068] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
164 Gratal P, Lamuedra A, Medina JP, Bermejo-Álvarez I, Largo R, Herrero-Beaumont G, Mediero A. Purinergic System Signaling in Metainflammation-Associated Osteoarthritis. Front Med (Lausanne) 2020;7:506. [PMID: 32984382 DOI: 10.3389/fmed.2020.00506] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
165 Liu S, Wang M, Wang N, Li S, Sun R, Xing J, Wang Y, Yu S, Li L, Li G, Liang S. Exploring the molecular mechanism of the effect of puerarin on P2X3. Int J Biol Macromol 2020;142:484-91. [PMID: 31593721 DOI: 10.1016/j.ijbiomac.2019.09.120] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
166 Saez NJ, Herzig V. Versatile spider venom peptides and their medical and agricultural applications. Toxicon 2019;158:109-26. [PMID: 30543821 DOI: 10.1016/j.toxicon.2018.11.298] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
167 Tozzi M, Hansen JB, Novak I. Pannexin-1 mediated ATP release in adipocytes is sensitive to glucose and insulin and modulates lipolysis and macrophage migration. Acta Physiol (Oxf) 2020;228:e13360. [PMID: 31400255 DOI: 10.1111/apha.13360] [Cited by in Crossref: 18] [Cited by in F6Publishing: 11] [Article Influence: 9.0] [Reference Citation Analysis]
168 Vultaggio-Poma V, Falzoni S, Salvi G, Giuliani AL, Di Virgilio F. Signalling by extracellular nucleotides in health and disease. Biochim Biophys Acta Mol Cell Res 2022;1869:119237. [PMID: 35150807 DOI: 10.1016/j.bbamcr.2022.119237] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
169 Azambuja JH, Gelsleichter NE, Beckenkamp LR, Iser IC, Fernandes MC, Figueiró F, Battastini AMO, Scholl JN, de Oliveira FH, Spanevello RM, Sévigny J, Wink MR, Stefani MA, Teixeira HF, Braganhol E. CD73 Downregulation Decreases In Vitro and In Vivo Glioblastoma Growth. Mol Neurobiol 2019;56:3260-79. [DOI: 10.1007/s12035-018-1240-4] [Cited by in Crossref: 28] [Cited by in F6Publishing: 26] [Article Influence: 7.0] [Reference Citation Analysis]
170 Savio LEB, de Andrade Mello P, da Silva CG, Coutinho-Silva R. The P2X7 Receptor in Inflammatory Diseases: Angel or Demon? Front Pharmacol. 2018;9:52. [PMID: 29467654 DOI: 10.3389/fphar.2018.00052] [Cited by in Crossref: 152] [Cited by in F6Publishing: 154] [Article Influence: 38.0] [Reference Citation Analysis]
171 Bibic L, Herzig V, King GF, Stokes L. Development of High-Throughput Fluorescent-Based Screens to Accelerate Discovery of P2X Inhibitors from Animal Venoms. J Nat Prod 2019;82:2559-67. [PMID: 31532206 DOI: 10.1021/acs.jnatprod.9b00410] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
172 Ballesteros-Yáñez I, Castillo CA, Merighi S, Gessi S. The Role of Adenosine Receptors in Psychostimulant Addiction. Front Pharmacol 2017;8:985. [PMID: 29375384 DOI: 10.3389/fphar.2017.00985] [Cited by in Crossref: 38] [Cited by in F6Publishing: 35] [Article Influence: 9.5] [Reference Citation Analysis]
173 Sheng D, Hattori M. Recent progress in the structural biology of P2X receptors. Proteins 2022. [PMID: 35023590 DOI: 10.1002/prot.26302] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
174 Barinov EF, Statinova EA, Sokhina VS, Faber TI. [Risks of progression of cerebrovascular pathology associated with the activity of the brain purinergic system]. Zh Nevrol Psikhiatr Im S S Korsakova 2020;120:118-24. [PMID: 33244967 DOI: 10.17116/jnevro2020120101118] [Reference Citation Analysis]
175 Thorstenberg ML, Rangel Ferreira MV, Amorim N, Canetti C, Morrone FB, Alves Filho JC, Coutinho-Silva R. Purinergic Cooperation Between P2Y2 and P2X7 Receptors Promote Cutaneous Leishmaniasis Control: Involvement of Pannexin-1 and Leukotrienes. Front Immunol 2018;9:1531. [PMID: 30038612 DOI: 10.3389/fimmu.2018.01531] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
176 Wernly B, Zhou 周稚超 Z. More purinergic receptors deserve attention as therapeutic targets for the treatment of cardiovascular disease. Am J Physiol Heart Circ Physiol 2020;319:H723-9. [PMID: 32822211 DOI: 10.1152/ajpheart.00417.2020] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
177 Fabbrizio P, Apolloni S, Bianchi A, Salvatori I, Valle C, Lanzuolo C, Bendotti C, Nardo G, Volonté C. P2X7 activation enhances skeletal muscle metabolism and regeneration in SOD1G93A mouse model of amyotrophic lateral sclerosis. Brain Pathol 2020;30:272-82. [PMID: 31376190 DOI: 10.1111/bpa.12774] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 3.3] [Reference Citation Analysis]
178 Cai Z, Tu L, Guignabert C, Merkus D, Zhou Z. Purinergic Dysfunction in Pulmonary Arterial Hypertension. J Am Heart Assoc 2020;9:e017404. [PMID: 32867554 DOI: 10.1161/JAHA.120.017404] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
179 Apolloni S, Fabbrizio P, Amadio S, Napoli G, Freschi M, Sironi F, Pevarello P, Tarroni P, Liberati C, Bendotti C, Volonté C. Novel P2X7 Antagonist Ameliorates the Early Phase of ALS Disease and Decreases Inflammation and Autophagy in SOD1-G93A Mouse Model. Int J Mol Sci 2021;22:10649. [PMID: 34638992 DOI: 10.3390/ijms221910649] [Reference Citation Analysis]
180 Qin L, Li J. Nerve growth factor in muscle afferent neurons of peripheral artery disease and autonomic function. Neural Regen Res 2021;16:694-9. [PMID: 33063730 DOI: 10.4103/1673-5374.293132] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
181 Alves M, Beamer E, Engel T. The Metabotropic Purinergic P2Y Receptor Family as Novel Drug Target in Epilepsy. Front Pharmacol 2018;9:193. [PMID: 29563872 DOI: 10.3389/fphar.2018.00193] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
182 Hirsova P, Bamidele AO, Wang H, Povero D, Revelo XS. Emerging Roles of T Cells in the Pathogenesis of Nonalcoholic Steatohepatitis and Hepatocellular Carcinoma. Front Endocrinol (Lausanne) 2021;12:760860. [PMID: 34777255 DOI: 10.3389/fendo.2021.760860] [Reference Citation Analysis]
183 Magni G, Ceruti S. The role of adenosine and P2Y receptors expressed by multiple cell types in pain transmission. Brain Res Bull 2019;151:132-43. [PMID: 30797817 DOI: 10.1016/j.brainresbull.2019.02.011] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
184 Salmaso V, Jacobson KA. Survey of ribose ring pucker of signaling nucleosides and nucleotides. Nucleosides Nucleotides Nucleic Acids 2020;39:322-41. [PMID: 31460850 DOI: 10.1080/15257770.2019.1658115] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
185 Fumagalli M, Lecca D, Abbracchio MP, Ceruti S. Pathophysiological Role of Purines and Pyrimidines in Neurodevelopment: Unveiling New Pharmacological Approaches to Congenital Brain Diseases. Front Pharmacol 2017;8:941. [PMID: 29375373 DOI: 10.3389/fphar.2017.00941] [Cited by in Crossref: 39] [Cited by in F6Publishing: 33] [Article Influence: 7.8] [Reference Citation Analysis]
186 Yi Z, Ouyang S, Zhou C, Xie L, Fang Z, Yuan H, Yang J, Zou L, Jia T, Zhao S, Li L, Shi L, Gao Y, Li G, Liu S, Xu H, Xu C, Zhang C, Liang S. Andrographolide Inhibits Mechanical and Thermal Hyperalgesia in a Rat Model of HIV-Induced Neuropathic Pain. Front Pharmacol 2018;9:593. [PMID: 29950989 DOI: 10.3389/fphar.2018.00593] [Cited by in Crossref: 12] [Cited by in F6Publishing: 11] [Article Influence: 3.0] [Reference Citation Analysis]