BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Ziemba AM, Gilbert RJ. Biomaterials for Local, Controlled Drug Delivery to the Injured Spinal Cord. Front Pharmacol 2017;8:245. [PMID: 28539887 DOI: 10.3389/fphar.2017.00245] [Cited by in Crossref: 46] [Cited by in F6Publishing: 40] [Article Influence: 9.2] [Reference Citation Analysis]
Number Citing Articles
1 Zhang S, Xing M, Li B. Recent advances in musculoskeletal local drug delivery. Acta Biomater 2019;93:135-51. [PMID: 30685475 DOI: 10.1016/j.actbio.2019.01.043] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 3.7] [Reference Citation Analysis]
2 Rocha LA, Silva D, Barata‐antunes S, Cavaleiro H, Gomes ED, Silva NA, Salgado AJ. Cell and Tissue Instructive Materials for Central Nervous System Repair. Adv Funct Mater 2020;30:1909083. [DOI: 10.1002/adfm.201909083] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
3 Fayzullin A, Bakulina A, Mikaelyan K, Shekhter A, Guller A. Implantable Drug Delivery Systems and Foreign Body Reaction: Traversing the Current Clinical Landscape. Bioengineering (Basel) 2021;8:205. [PMID: 34940358 DOI: 10.3390/bioengineering8120205] [Reference Citation Analysis]
4 Shultz RB, Zhong Y. Hydrogel-based local drug delivery strategies for spinal cord repair. Neural Regen Res 2021;16:247-53. [PMID: 32859771 DOI: 10.4103/1673-5374.290882] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
5 Fakhri S, Abbaszadeh F, Jorjani M. On the therapeutic targets and pharmacological treatments for pain relief following spinal cord injury: A mechanistic review. Biomed Pharmacother 2021;139:111563. [PMID: 33873146 DOI: 10.1016/j.biopha.2021.111563] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
6 Lin J, Song X, Yin H, Song N, Wang Y, Li Z, Luo F, Tan H, He X, Li J. Citicoline–liposome/polyurethane composite scaffolds regulate the inflammatory response of microglia to promote nerve regeneration. J Mater Sci 2022;57:2073-88. [DOI: 10.1007/s10853-021-06628-0] [Reference Citation Analysis]
7 Zamproni LN, Mundim MTVV, Porcionatto MA. Neurorepair and Regeneration of the Brain: A Decade of Bioscaffolds and Engineered Microtissue. Front Cell Dev Biol 2021;9:649891. [PMID: 33898443 DOI: 10.3389/fcell.2021.649891] [Reference Citation Analysis]
8 Quarterman JC, Geary SM, Salem AK. Evolution of drug-eluting biomedical implants for sustained drug delivery. Eur J Pharm Biopharm 2021;159:21-35. [PMID: 33338604 DOI: 10.1016/j.ejpb.2020.12.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 2.5] [Reference Citation Analysis]
9 Modo MM, Jolkkonen J, Zille M, Boltze J. Future of Animal Modeling for Poststroke Tissue Repair. Stroke 2018;49:1099-106. [PMID: 29669872 DOI: 10.1161/STROKEAHA.117.018293] [Cited by in Crossref: 20] [Cited by in F6Publishing: 13] [Article Influence: 5.0] [Reference Citation Analysis]
10 Ashammakhi N, Ahadian S, Darabi MA, El Tahchi M, Lee J, Suthiwanich K, Sheikhi A, Dokmeci MR, Oklu R, Khademhosseini A. Minimally Invasive and Regenerative Therapeutics. Adv Mater 2019;31:e1804041. [PMID: 30565732 DOI: 10.1002/adma.201804041] [Cited by in Crossref: 60] [Cited by in F6Publishing: 49] [Article Influence: 15.0] [Reference Citation Analysis]
11 Burcham PC. Carbonyl scavengers as pharmacotherapies in degenerative disease: Hydralazine repurposing and challenges in clinical translation. Biochem Pharmacol 2018;154:397-406. [PMID: 29883705 DOI: 10.1016/j.bcp.2018.06.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
12 Rohnke M, Pfitzenreuter S, Mogwitz B, Henß A, Thomas J, Bieberstein D, Gemming T, Otto SK, Ray S, Schumacher M, Gelinsky M, Alt V. Strontium release from Sr2+-loaded bone cements and dispersion in healthy and osteoporotic rat bone. J Control Release 2017;262:159-69. [PMID: 28757358 DOI: 10.1016/j.jconrel.2017.07.036] [Cited by in Crossref: 22] [Cited by in F6Publishing: 21] [Article Influence: 4.4] [Reference Citation Analysis]
13 Bonnet M, Trimaille T, Brezun J, Feron F, Gigmes D, Marqueste T, Decherchi P. Motor and sensitive recovery after injection of a physically cross-linked PNIPAAm-g-PEG hydrogel in rat hemisectioned spinal cord. Materials Science and Engineering: C 2020;107:110354. [DOI: 10.1016/j.msec.2019.110354] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
14 Serrano MC, Feito MJ, González-Mayorga A, Diez-Orejas R, Matesanz MC, Portolés MT. Response of macrophages and neural cells in contact with reduced graphene oxide microfibers. Biomater Sci 2018;6:2987-97. [PMID: 30255874 DOI: 10.1039/c8bm00902c] [Cited by in Crossref: 25] [Cited by in F6Publishing: 6] [Article Influence: 6.3] [Reference Citation Analysis]
15 Chakraborty A, Ciciriello AJ, Dumont CM, Pearson RM. Nanoparticle-Based Delivery to Treat Spinal Cord Injury-a Mini-review. AAPS PharmSciTech 2021;22:101. [PMID: 33712968 DOI: 10.1208/s12249-021-01975-2] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Ziemba AM, D'Amato AR, MacEwen TM, Puhl DL, Koppes AN, Koppes RA, Lennartz MR, Gilbert RJ. Stabilized Interleukin-4-Loaded Poly(lactic-co-glycolic) Acid Films Shift Proinflammatory Macrophages toward a Regenerative Phenotype in Vitro. ACS Appl Bio Mater 2019;2:1498-508. [PMID: 31061988 DOI: 10.1021/acsabm.8b00769] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
17 He Z, Zang H, Zhu L, Huang K, Yi T, Zhang S, Cheng S. An anti-inflammatory peptide and brain-derived neurotrophic factor-modified hyaluronan-methylcellulose hydrogel promotes nerve regeneration in rats with spinal cord injury. Int J Nanomedicine 2019;14:721-32. [PMID: 30705588 DOI: 10.2147/IJN.S187854] [Cited by in Crossref: 15] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
18 Ghane N, Beigi M, Labbaf S, Nasr-esfahani M, Kiani A. Design of hydrogel-based scaffolds for the treatment of spinal cord injuries. J Mater Chem B 2020;8:10712-38. [DOI: 10.1039/d0tb01842b] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
19 Kubinová Š. Soft and rigid scaffolds for spinal cord injury regeneration. Spinal Cord Injury (SCI) Repair Strategies. Elsevier; 2020. pp. 105-27. [DOI: 10.1016/b978-0-08-102807-0.00007-7] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
20 Park J, Decker JT, Margul DJ, Smith DR, Cummings BJ, Anderson AJ, Shea LD. Local Immunomodulation with Anti-inflammatory Cytokine-Encoding Lentivirus Enhances Functional Recovery after Spinal Cord Injury. Mol Ther 2018;26:1756-70. [PMID: 29778523 DOI: 10.1016/j.ymthe.2018.04.022] [Cited by in Crossref: 25] [Cited by in F6Publishing: 22] [Article Influence: 6.3] [Reference Citation Analysis]
21 Zavvarian MM, Toossi A, Khazaei M, Hong J, Fehlings M. Novel innovations in cell and gene therapies for spinal cord injury. F1000Res 2020;9:F1000 Faculty Rev-279. [PMID: 32399196 DOI: 10.12688/f1000research.21989.1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
22 Lamichhane P, Deshmukh R, Brown JA, Jakubski S, Parajuli P, Nolan T, Raja D, Badawy M, Yoon T, Zmiyiwsky M, Lamichhane N. Novel Delivery Systems for Checkpoint Inhibitors. Medicines (Basel) 2019;6:E74. [PMID: 31373327 DOI: 10.3390/medicines6030074] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
23 Lu X, Perera TH, Aria AB, Callahan LAS. Polyethylene glycol in spinal cord injury repair: a critical review. J Exp Pharmacol 2018;10:37-49. [PMID: 30100766 DOI: 10.2147/JEP.S148944] [Cited by in Crossref: 21] [Cited by in F6Publishing: 6] [Article Influence: 5.3] [Reference Citation Analysis]
24 Patar A, Dockery P, McMahon S, Howard L. Ex Vivo Rat Transected Spinal Cord Slices as a Model to Assess Lentiviral Vector Delivery of Neurotrophin-3 and Short Hairpin RNA against NG2. Biology (Basel) 2020;9:E54. [PMID: 32183469 DOI: 10.3390/biology9030054] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Tanaka R, Saito Y, Fujiwara Y, Jo JI, Tabata Y. Preparation of fibrin hydrogels to promote the recruitment of anti-inflammatory macrophages. Acta Biomater 2019;89:152-65. [PMID: 30862554 DOI: 10.1016/j.actbio.2019.03.011] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
26 Silva D, Sousa RA, Salgado AJ. Hydrogels as delivery systems for spinal cord injury regeneration. Mater Today Bio 2021;9:100093. [PMID: 33665602 DOI: 10.1016/j.mtbio.2021.100093] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
27 Bartlett RD, Burley S, Ip M, Phillips JB, Choi D. Cell Therapies for Spinal Cord Injury: Trends and Challenges of Current Clinical Trials. Neurosurgery 2020;87:E456-72. [DOI: 10.1093/neuros/nyaa149] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
28 Rossi F, Papa S, Perale G, Veglianese P. How can nanovectors be used to treat spinal cord injury? Nanomedicine 2019;14:3123-5. [DOI: 10.2217/nnm-2019-0355] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
29 Funnell JL, Balouch B, Gilbert RJ. Magnetic Composite Biomaterials for Neural Regeneration. Front Bioeng Biotechnol 2019;7:179. [PMID: 31404143 DOI: 10.3389/fbioe.2019.00179] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
30 Bartlett RD, Eleftheriadou D, Evans R, Choi D, Phillips JB. Mechanical properties of the spinal cord and brain: Comparison with clinical-grade biomaterials for tissue engineering and regenerative medicine. Biomaterials 2020;258:120303. [DOI: 10.1016/j.biomaterials.2020.120303] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 3.5] [Reference Citation Analysis]
31 Kiyotake EA, Martin MD, Detamore MS. Regenerative rehabilitation with conductive biomaterials for spinal cord injury. Acta Biomaterialia 2020. [DOI: 10.1016/j.actbio.2020.12.021] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
32 Chen J, Li L, Gao J. Biomaterials for local drug delivery in central nervous system. International Journal of Pharmaceutics 2019;560:92-100. [DOI: 10.1016/j.ijpharm.2019.01.071] [Cited by in Crossref: 8] [Cited by in F6Publishing: 5] [Article Influence: 2.7] [Reference Citation Analysis]
33 Funnell JL, Ziemba AM, Nowak JF, Awada H, Prokopiou N, Samuel J, Guari Y, Nottelet B, Gilbert RJ. Assessing the combination of magnetic field stimulation, iron oxide nanoparticles, and aligned electrospun fibers for promoting neurite outgrowth from dorsal root ganglia in vitro. Acta Biomater 2021;131:302-13. [PMID: 34271170 DOI: 10.1016/j.actbio.2021.06.049] [Reference Citation Analysis]
34 Reis KP, Sperling LE, Teixeira C, Paim Á, Alcântara B, Vizcay-barrena G, Fleck RA, Pranke P. Application of PLGA/FGF-2 coaxial microfibers in spinal cord tissue engineering: an in vitro and in vivo investigation. Regenerative Medicine 2018;13:785-801. [DOI: 10.2217/rme-2018-0060] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
35 Puhl DL, Funnell JL, Nelson DW, Gottipati MK, Gilbert RJ. Electrospun Fiber Scaffolds for Engineering Glial Cell Behavior to Promote Neural Regeneration. Bioengineering (Basel) 2020;8:4. [PMID: 33383759 DOI: 10.3390/bioengineering8010004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
36 Lee J, Zhao T, Peeler DJ, Lee DC, Pichon TJ, Li D, Weigandt KM, Horner PJ, Pozzo LD, Sellers DL, Pun SH. Formulation of thrombin-inhibiting hydrogels via self-assembly of ionic peptides with peptide-modified polymers. Soft Matter 2020;16:3762-8. [PMID: 32239011 DOI: 10.1039/d0sm00209g] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Nelson DW, Gilbert RJ. Extracellular Matrix-Mimetic Hydrogels for Treating Neural Tissue Injury: A Focus on Fibrin, Hyaluronic Acid, and Elastin-Like Polypeptide Hydrogels. Adv Healthc Mater 2021;10:e2101329. [PMID: 34494398 DOI: 10.1002/adhm.202101329] [Reference Citation Analysis]
38 Vigani B, Rossi S, Sandri G, Bonferoni MC, Ferrari F. Design and criteria of electrospun fibrous scaffolds for the treatment of spinal cord injury. Neural Regen Res 2017;12:1786-90. [PMID: 29239316 DOI: 10.4103/1673-5374.219029] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
39 Tatic N, Rose FRAJ, des Rieux A, White LJ. Stem cells from the dental apical papilla in extracellular matrix hydrogels mitigate inflammation of microglial cells. Sci Rep 2019;9:14015. [PMID: 31570730 DOI: 10.1038/s41598-019-50367-x] [Cited by in Crossref: 10] [Cited by in F6Publishing: 8] [Article Influence: 3.3] [Reference Citation Analysis]
40 Ashammakhi N, Kim HJ, Ehsanipour A, Bierman RD, Kaarela O, Xue C, Khademhosseini A, Seidlits SK. Regenerative Therapies for Spinal Cord Injury. Tissue Eng Part B Rev 2019;25:471-91. [PMID: 31452463 DOI: 10.1089/ten.TEB.2019.0182] [Cited by in Crossref: 28] [Cited by in F6Publishing: 25] [Article Influence: 9.3] [Reference Citation Analysis]
41 Wang X, Li B, Fan J, Tian S, Wei X. Novel nanoformulated combination of Se and CeO 2 particles loaded polylactic‐co‐glycolic acid vesicle to improved anti‐inflammation and auto‐regenerative for the treatment and care of spinal cord injury. Appl Organomet Chem 2021;35. [DOI: 10.1002/aoc.6269] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
42 Park J, Decker JT, Smith DR, Cummings BJ, Anderson AJ, Shea LD. Reducing inflammation through delivery of lentivirus encoding for anti-inflammatory cytokines attenuates neuropathic pain after spinal cord injury. J Control Release 2018;290:88-101. [PMID: 30296461 DOI: 10.1016/j.jconrel.2018.10.003] [Cited by in Crossref: 21] [Cited by in F6Publishing: 21] [Article Influence: 5.3] [Reference Citation Analysis]
43 Mesentier-louro LA, Dodd R, Domizi P, Nobuta H, Wernig M, Wernig G, Liao YJ. Direct targeting of the mouse optic nerve for therapeutic delivery. Journal of Neuroscience Methods 2019;313:1-5. [DOI: 10.1016/j.jneumeth.2018.10.038] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
44 Hosseinzadeh S, Lindsay SL, Gallagher AG, Wellings DA, Riehle MO, Riddell JS, Barnett SC. A novel poly-ε-lysine based implant, Proliferate®, for promotion of CNS repair following spinal cord injury. Biomater Sci 2020;8:3611-27. [PMID: 32515439 DOI: 10.1039/d0bm00097c] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]