BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Smith CM, Walker AW, Hosken IT, Chua BE, Zhang C, Haidar M, Gundlach AL. Relaxin-3/RXFP3 networks: an emerging target for the treatment of depression and other neuropsychiatric diseases? Front Pharmacol 2014;5:46. [PMID: 24711793 DOI: 10.3389/fphar.2014.00046] [Cited by in Crossref: 35] [Cited by in F6Publishing: 34] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Zhang C, Baimoukhametova DV, Smith CM, Bains JS, Gundlach AL. Relaxin-3/RXFP3 signalling in mouse hypothalamus: no effect of RXFP3 activation on corticosterone, despite reduced presynaptic excitatory input onto paraventricular CRH neurons in vitro. Psychopharmacology (Berl) 2017;234:1725-39. [PMID: 28314951 DOI: 10.1007/s00213-017-4575-z] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.2] [Reference Citation Analysis]
2 Gil-Miravet I, Mañas-Ojeda A, Ros-Bernal F, Castillo-Gómez E, Albert-Gascó H, Gundlach AL, Olucha-Bordonau FE. Involvement of the Nucleus Incertus and Relaxin-3/RXFP3 Signaling System in Explicit and Implicit Memory. Front Neuroanat 2021;15:637922. [PMID: 33867946 DOI: 10.3389/fnana.2021.637922] [Reference Citation Analysis]
3 Albert-Gascó H, Ros-Bernal F, Castillo-Gómez E, Olucha-Bordonau FE. MAP/ERK Signaling in Developing Cognitive and Emotional Function and Its Effect on Pathological and Neurodegenerative Processes. Int J Mol Sci 2020;21:E4471. [PMID: 32586047 DOI: 10.3390/ijms21124471] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
4 Jékely G, Melzer S, Beets I, Kadow ICG, Koene J, Haddad S, Holden-Dye L. The long and the short of it - a perspective on peptidergic regulation of circuits and behaviour. J Exp Biol 2018;221:jeb166710. [PMID: 29439060 DOI: 10.1242/jeb.166710] [Cited by in Crossref: 42] [Cited by in F6Publishing: 36] [Article Influence: 10.5] [Reference Citation Analysis]
5 DeChristopher B, Park SH, Vong L, Bamford D, Cho HH, Duvadie R, Fedolak A, Hogan C, Honda T, Pandey P, Rozhitskaya O, Su L, Tomlinson E, Wallace I. Discovery of a small molecule RXFP3/4 agonist that increases food intake in rats upon acute central administration. Bioorg Med Chem Lett 2019;29:991-4. [PMID: 30824200 DOI: 10.1016/j.bmcl.2019.02.013] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
6 Calvez J, Lenglos C, de Ávila C, Guèvremont G, Timofeeva E. Differential effects of central administration of relaxin-3 on food intake and hypothalamic neuropeptides in male and female rats: Sex-specific effects of relaxin-3. Genes, Brain and Behavior 2015;14:550-63. [DOI: 10.1111/gbb.12236] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 2.1] [Reference Citation Analysis]
7 van Gastel J, Leysen H, Santos-Otte P, Hendrickx JO, Azmi A, Martin B, Maudsley S. The RXFP3 receptor is functionally associated with cellular responses to oxidative stress and DNA damage. Aging (Albany NY) 2019;11:11268-313. [PMID: 31794429 DOI: 10.18632/aging.102528] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.7] [Reference Citation Analysis]
8 Heredia F, Volonté Y, Pereirinha J, Fernandez-Acosta M, Casimiro AP, Belém CG, Viegas F, Tanaka K, Menezes J, Arana M, Cardoso GA, Macedo A, Kotowicz M, Prado Spalm FH, Dibo MJ, Monfardini RD, Torres TT, Mendes CS, Garelli A, Gontijo AM. The steroid-hormone ecdysone coordinates parallel pupariation neuromotor and morphogenetic subprograms via epidermis-to-neuron Dilp8-Lgr3 signal induction. Nat Commun 2021;12:3328. [PMID: 34099654 DOI: 10.1038/s41467-021-23218-5] [Reference Citation Analysis]
9 Ma S, Gundlach AL. Ascending control of arousal and motivation: role of nucleus incertus and its peptide neuromodulators in behavioural responses to stress. J Neuroendocrinol 2015;27:457-67. [PMID: 25612218 DOI: 10.1111/jne.12259] [Cited by in Crossref: 22] [Cited by in F6Publishing: 24] [Article Influence: 3.7] [Reference Citation Analysis]
10 Lin G, Feng Y, Cai X, Zhou C, Shao L, Chen Y, Chen L, Liu Q, Zhou Q, Bathgate RAD, Yang D, Wang MW. High-Throughput Screening Campaign Identified a Potential Small Molecule RXFP3/4 Agonist. Molecules 2021;26:7511. [PMID: 34946593 DOI: 10.3390/molecules26247511] [Reference Citation Analysis]
11 Renoir T. New frontiers in the neuropsychopharmacology of mental illness. Front Pharmacol 2014;5:212. [PMID: 25278898 DOI: 10.3389/fphar.2014.00212] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.3] [Reference Citation Analysis]
12 Hossain MA, Wade JD. Synthetic relaxins. Current Opinion in Chemical Biology 2014;22:47-55. [DOI: 10.1016/j.cbpa.2014.09.014] [Cited by in Crossref: 33] [Cited by in F6Publishing: 31] [Article Influence: 4.1] [Reference Citation Analysis]
13 Rodriguez-Ayllon M, Acosta-Manzano P, Coll-Risco I, Romero-Gallardo L, Borges-Cosic M, Estévez-López F, Aparicio VA. Associations of physical activity, sedentary time, and physical fitness with mental health during pregnancy: The GESTAFIT project. J Sport Health Sci 2021;10:379-86. [PMID: 34024352 DOI: 10.1016/j.jshs.2019.04.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
14 Lawther A, Clissold M, Ma S, Kent S, Lowry C, Gundlach A, Hale M. Anxiogenic drug administration and elevated plus-maze exposure in rats activate populations of relaxin-3 neurons in the nucleus incertus and serotonergic neurons in the dorsal raphe nucleus. Neuroscience 2015;303:270-84. [DOI: 10.1016/j.neuroscience.2015.06.052] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.4] [Reference Citation Analysis]
15 Meadows KL, Byrnes EM. Sex- and age-specific differences in relaxin family peptide receptor expression within the hippocampus and amygdala in rats. Neuroscience 2015;284:337-48. [PMID: 25313002 DOI: 10.1016/j.neuroscience.2014.10.006] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 0.8] [Reference Citation Analysis]
16 Nasirova N, Quina LA, Morton G, Walker A, Turner EE. Mapping Cell Types and Efferent Pathways in the Ascending Relaxin-3 System of the Nucleus Incertus. eNeuro 2020;7:ENEURO. [PMID: 33055197 DOI: 10.1523/ENEURO.0272-20.2020] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
17 Donizetti A, Fiengo M, Del Gaudio R, Iazzetti G, Pariante P, Minucci S, Aniello F. Expression pattern of zebrafish rxfp2 homologue genes during embryonic development. J Exp Zool B Mol Dev Evol 2015;324:605-13. [PMID: 26173401 DOI: 10.1002/jez.b.22637] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 0.7] [Reference Citation Analysis]
18 Haidar M, Tin K, Zhang C, Nategh M, Covita J, Wykes AD, Rogers J, Gundlach AL. Septal GABA and Glutamate Neurons Express RXFP3 mRNA and Depletion of Septal RXFP3 Impaired Spatial Search Strategy and Long-Term Reference Memory in Adult Mice. Front Neuroanat 2019;13:30. [PMID: 30906254 DOI: 10.3389/fnana.2019.00030] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
19 Kupcova I, Danisovic L, Grgac I, Harsanyi S. Anxiety and Depression: What Do We Know of Neuropeptides? Behavioral Sciences 2022;12:262. [DOI: 10.3390/bs12080262] [Reference Citation Analysis]
20 Hosken IT, Sutton SW, Smith CM, Gundlach AL. Relaxin-3 receptor (Rxfp3) gene knockout mice display reduced running wheel activity: implications for role of relaxin-3/RXFP3 signalling in sustained arousal. Behav Brain Res 2015;278:167-75. [PMID: 25257104 DOI: 10.1016/j.bbr.2014.09.028] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 3.5] [Reference Citation Analysis]
21 van Gastel J, Cai H, Cong WN, Chadwick W, Daimon C, Leysen H, Hendrickx JO, De Schepper R, Vangenechten L, Van Turnhout J, Verswyvel J, Becker KG, Zhang Y, Lehrmann E, Wood WH 3rd, Martin B, Maudsley S. Multidimensional informatic deconvolution defines gender-specific roles of hypothalamic GIT2 in aging trajectories. Mech Ageing Dev 2019;184:111150. [PMID: 31574270 DOI: 10.1016/j.mad.2019.111150] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
22 Ch'ng S, Fu J, Brown RM, Mcdougall SJ, Lawrence AJ. The intersection of stress and reward: BNST modulation of aversive and appetitive states. Progress in Neuro-Psychopharmacology and Biological Psychiatry 2018;87:108-25. [DOI: 10.1016/j.pnpbp.2018.01.005] [Cited by in Crossref: 47] [Cited by in F6Publishing: 45] [Article Influence: 11.8] [Reference Citation Analysis]
23 Wykes AD, Ma S, Bathgate RAD, Gundlach AL. Targeted viral vector transduction of relaxin-3 neurons in the rat nucleus incertus using a novel cell-type specific promoter. IBRO Rep 2020;8:1-10. [PMID: 31890981 DOI: 10.1016/j.ibror.2019.11.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
24 Leysen H, Walter D, Clauwaert L, Hellemans L, van Gastel J, Vasudevan L, Martin B, Maudsley S. The Relaxin-3 Receptor, RXFP3, Is a Modulator of Aging-Related Disease. Int J Mol Sci 2022;23:4387. [PMID: 35457203 DOI: 10.3390/ijms23084387] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
25 Smith CM, Chua BE, Zhang C, Walker AW, Haidar M, Hawkes D, Shabanpoor F, Hossain MA, Wade JD, Rosengren KJ, Gundlach AL. Central injection of relaxin-3 receptor (RXFP3) antagonist peptides reduces motivated food seeking and consumption in C57BL/6J mice. Behav Brain Res 2014;268:117-26. [PMID: 24681162 DOI: 10.1016/j.bbr.2014.03.037] [Cited by in Crossref: 29] [Cited by in F6Publishing: 27] [Article Influence: 3.6] [Reference Citation Analysis]
26 Praveen P, Tailhades J, Rosengren KJ, Liu M, Wade JD, Bathgate RAD, Hossain MA. Effects of C-Terminal B-Chain Modifications in a Relaxin 3 Agonist Analogue. ACS Med Chem Lett 2020;11:2336-40. [PMID: 33214850 DOI: 10.1021/acsmedchemlett.0c00456] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
27 Kumar JR, Rajkumar R, Jayakody T, Marwari S, Hong JM, Ma S, Gundlach AL, Lai MKP, Dawe GS. Relaxin' the brain: a case for targeting the nucleus incertus network and relaxin-3/RXFP3 system in neuropsychiatric disorders. Br J Pharmacol 2017;174:1061-76. [PMID: 27597467 DOI: 10.1111/bph.13564] [Cited by in Crossref: 27] [Cited by in F6Publishing: 28] [Article Influence: 4.5] [Reference Citation Analysis]
28 Haidar M, Guèvremont G, Zhang C, Bathgate RAD, Timofeeva E, Smith CM, Gundlach AL. Relaxin-3 inputs target hippocampal interneurons and deletion of hilar relaxin-3 receptors in "floxed-RXFP3" mice impairs spatial memory. Hippocampus 2017;27:529-46. [PMID: 28100033 DOI: 10.1002/hipo.22709] [Cited by in Crossref: 15] [Cited by in F6Publishing: 17] [Article Influence: 3.0] [Reference Citation Analysis]
29 Santos FN, Pereira CW, Sánchez-Pérez AM, Otero-García M, Ma S, Gundlach AL, Olucha-Bordonau FE. Comparative Distribution of Relaxin-3 Inputs and Calcium-Binding Protein-Positive Neurons in Rat Amygdala. Front Neuroanat 2016;10:36. [PMID: 27092060 DOI: 10.3389/fnana.2016.00036] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
30 Zhang C, Chua BE, Yang A, Shabanpoor F, Hossain MA, Wade JD, Rosengren KJ, Smith CM, Gundlach AL. Central relaxin-3 receptor (RXFP3) activation reduces elevated, but not basal, anxiety-like behaviour in C57BL/6J mice. Behavioural Brain Research 2015;292:125-32. [DOI: 10.1016/j.bbr.2015.06.010] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.1] [Reference Citation Analysis]
31 Wong WLE, Dawe GS, Young AH. The putative role of the relaxin-3/RXFP3 system in clinical depression and anxiety: A systematic literature review. Neurosci Biobehav Rev 2021;131:429-50. [PMID: 34537263 DOI: 10.1016/j.neubiorev.2021.09.028] [Reference Citation Analysis]
32 Hojo K, Hossain MA, Tailhades J, Shabanpoor F, Wong LL, Ong-Pålsson EE, Kastman HE, Ma S, Gundlach AL, Rosengren KJ, Wade JD, Bathgate RA. Development of a Single-Chain Peptide Agonist of the Relaxin-3 Receptor Using Hydrocarbon Stapling. J Med Chem 2016;59:7445-56. [PMID: 27464307 DOI: 10.1021/acs.jmedchem.6b00265] [Cited by in Crossref: 26] [Cited by in F6Publishing: 23] [Article Influence: 4.3] [Reference Citation Analysis]
33 Patil NA, Rosengren KJ, Separovic F, Wade JD, Bathgate RAD, Hossain MA. Relaxin family peptides: structure-activity relationship studies. Br J Pharmacol 2017;174:950-61. [PMID: 27922185 DOI: 10.1111/bph.13684] [Cited by in Crossref: 46] [Cited by in F6Publishing: 39] [Article Influence: 9.2] [Reference Citation Analysis]
34 Ma S, Smith CM, Blasiak A, Gundlach AL. Distribution, physiology and pharmacology of relaxin-3/RXFP3 systems in brain. Br J Pharmacol 2017;174:1034-48. [PMID: 27774604 DOI: 10.1111/bph.13659] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 5.7] [Reference Citation Analysis]
35 Oh K, Adnan M, Cho D. Network Pharmacology Study to Interpret Signaling Pathways of Ilex cornuta Leaves against Obesity. Processes 2021;9:1106. [DOI: 10.3390/pr9071106] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
36 Blasiak A, Siwiec M, Grabowiecka A, Blasiak T, Czerw A, Blasiak E, Kania A, Rajfur Z, Lewandowski MH, Gundlach AL. Excitatory orexinergic innervation of rat nucleus incertus--Implications for ascending arousal, motivation and feeding control. Neuropharmacology 2015;99:432-47. [PMID: 26265304 DOI: 10.1016/j.neuropharm.2015.08.014] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 3.3] [Reference Citation Analysis]
37 Haidar M, Lam M, Chua BE, Smith CM, Gundlach AL. Sensitivity to Chronic Methamphetamine Administration and Withdrawal in Mice with Relaxin-3/RXFP3 Deficiency. Neurochem Res 2016;41:481-91. [PMID: 26023064 DOI: 10.1007/s11064-015-1621-2] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
38 Olucha-Bordonau FE, Albert-Gascó H, Ros-Bernal F, Rytova V, Ong-Pålsson EKE, Ma S, Sánchez-Pérez AM, Gundlach AL. Modulation of forebrain function by nucleus incertus and relaxin-3/RXFP3 signaling. CNS Neurosci Ther 2018;24:694-702. [PMID: 29722152 DOI: 10.1111/cns.12862] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 2.3] [Reference Citation Analysis]
39 Smith CM, Walker LL, Chua BE, McKinley MJ, Gundlach AL, Denton DA, Lawrence AJ. Involvement of central relaxin-3 signalling in sodium (salt) appetite. Exp Physiol 2015;100:1064-72. [PMID: 26147879 DOI: 10.1113/EP085349] [Cited by in Crossref: 9] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]