BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chierici M, Bussola N, Marcolini A, Francescatto M, Zandonà A, Trastulla L, Agostinelli C, Jurman G, Furlanello C. Integrative Network Fusion: A Multi-Omics Approach in Molecular Profiling. Front Oncol 2020;10:1065. [PMID: 32714870 DOI: 10.3389/fonc.2020.01065] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Smith BJ, Silva-Costa LC, Martins-de-Souza D. Human disease biomarker panels through systems biology. Biophys Rev 2021;13:1179-90. [PMID: 35059036 DOI: 10.1007/s12551-021-00849-y] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
2 Quinlan PR, Figeuredo G, Mongan N, Jordan LB, Bray SE, Sreseli R, Ashfield A, Mitsch J, van den Ijssel P, Thompson AM, Quinlan RA. Cluster analyses of the TCGA and a TMA dataset using the coexpression of HSP27 and CRYAB improves alignment with clinical-pathological parameters of breast cancer and suggests different epichaperome influences for each sHSP. Cell Stress Chaperones 2022. [PMID: 35235182 DOI: 10.1007/s12192-022-01258-0] [Reference Citation Analysis]
3 Picard M, Scott-Boyer MP, Bodein A, Périn O, Droit A. Integration strategies of multi-omics data for machine learning analysis. Comput Struct Biotechnol J 2021;19:3735-46. [PMID: 34285775 DOI: 10.1016/j.csbj.2021.06.030] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
4 Pan Y, Lei X, Zhang Y. Association predictions of genomics, proteinomics, transcriptomics, microbiome, metabolomics, pathomics, radiomics, drug, symptoms, environment factor, and disease networks: A comprehensive approach. Med Res Rev 2021. [PMID: 34346083 DOI: 10.1002/med.21847] [Reference Citation Analysis]
5 Narayana JK, Mac Aogáin M, Ali NABM, Tsaneva-Atanasova K, Chotirmall SH. Similarity network fusion for the integration of multi-omics and microbiomes in respiratory disease. Eur Respir J 2021;58:2101016. [PMID: 34140302 DOI: 10.1183/13993003.01016-2021] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
6 Cava C, Sabetian S, Castiglioni I. Patient-Specific Network for Personalized Breast Cancer Therapy with Multi-Omics Data. Entropy (Basel) 2021;23:225. [PMID: 33670375 DOI: 10.3390/e23020225] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
7 Yu K, Xie W, Wang L, Li W. ILRC: a hybrid biomarker discovery algorithm based on improved L1 regularization and clustering in microarray data. BMC Bioinformatics 2021;22:514. [PMID: 34686127 DOI: 10.1186/s12859-021-04443-7] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Vahabi N, Michailidis G. Unsupervised Multi-Omics Data Integration Methods: A Comprehensive Review. Front Genet 2022;13:854752. [PMID: 35391796 DOI: 10.3389/fgene.2022.854752] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Moingeon P. [Applications of artificial intelligence to new drug development]. Ann Pharm Fr 2021;79:566-71. [PMID: 33529579 DOI: 10.1016/j.pharma.2021.01.008] [Reference Citation Analysis]
10 Aydin B, Caliskan A, Arga KY. Overview of omics biomarkers in pituitary neuroendocrine tumors to design future diagnosis and treatment strategies. EPMA J 2021;12:383-401. [PMID: 34567287 DOI: 10.1007/s13167-021-00246-1] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
11 Ahmad F, Mahmood A, Muhmood T. Machine learning-integrated omics for the risk and safety assessment of nanomaterials. Biomater Sci 2021;9:1598-608. [PMID: 33443512 DOI: 10.1039/d0bm01672a] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
12 Mahapatra S, Bhuyan R, Das J, Swarnkar T. Integrated multiplex network based approach for hub gene identification in oral cancer. Heliyon 2021;7:e07418. [PMID: 34258466 DOI: 10.1016/j.heliyon.2021.e07418] [Reference Citation Analysis]