BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Riga D, Matos MR, Glas A, Smit AB, Spijker S, Van den Oever MC. Optogenetic dissection of medial prefrontal cortex circuitry. Front Syst Neurosci 2014;8:230. [PMID: 25538574 DOI: 10.3389/fnsys.2014.00230] [Cited by in Crossref: 115] [Cited by in F6Publishing: 105] [Article Influence: 14.4] [Reference Citation Analysis]
Number Citing Articles
1 Talukdar G, Inoue R, Yoshida T, Mori H. Impairment in extinction of cued fear memory in syntenin-1 knockout mice. Neurobiol Learn Mem 2018;149:58-67. [PMID: 29408273 DOI: 10.1016/j.nlm.2018.01.006] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 1.8] [Reference Citation Analysis]
2 Cover CG, Kesner AJ, Ukani S, Stein EA, Ikemoto S, Yang Y, Lu H. Whole brain dynamics during optogenetic self-stimulation of the medial prefrontal cortex in mice. Commun Biol 2021;4:66. [PMID: 33446857 DOI: 10.1038/s42003-020-01612-x] [Reference Citation Analysis]
3 Kim TK, Han PL. Functional Connectivity of Basolateral Amygdala Neurons Carrying Orexin Receptors and Melanin-concentrating Hormone Receptors in Regulating Sociability and Mood-related Behaviors. Exp Neurobiol 2016;25:307-17. [PMID: 28035181 DOI: 10.5607/en.2016.25.6.307] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
4 Luessen DJ, Gallinger IM, Ferranti AS, Foster DJ, Melancon BJ, Lindsley CW, Niswender CM, Conn J. mGlu1-mediated restoration of prefrontal cortex inhibitory signaling reverses social and cognitive deficits in an NMDA hypofunction model in mice. Neuropsychopharmacol . [DOI: 10.1038/s41386-022-01350-0] [Reference Citation Analysis]
5 Kim Y, Noh YW, Kim K, Yang E, Kim H, Kim E. IRSp53 Deletion in Glutamatergic and GABAergic Neurons and in Male and Female Mice Leads to Distinct Electrophysiological and Behavioral Phenotypes. Front Cell Neurosci 2020;14:23. [PMID: 32116566 DOI: 10.3389/fncel.2020.00023] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
6 Liu J, Dietz K, Hodes GE, Russo SJ, Casaccia P. Widespread transcriptional alternations in oligodendrocytes in the adult mouse brain following chronic stress. Dev Neurobiol 2018;78:152-62. [PMID: 28884925 DOI: 10.1002/dneu.22533] [Cited by in Crossref: 28] [Cited by in F6Publishing: 27] [Article Influence: 5.6] [Reference Citation Analysis]
7 Chen S, Song Y, Wu H, Ge H, Qi W, Xi Y, Wu J, Ji Y, Chen K, Lin X, Chen J. Hyperconnectivity Associated with Anosognosia Accelerating Clinical Progression in Amnestic Mild Cognitive Impairment. ACS Chem Neurosci 2022;13:120-33. [PMID: 34923823 DOI: 10.1021/acschemneuro.1c00595] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Moore CF, Sabino V, Koob GF, Cottone P. Dissecting compulsive eating behavior into three elements. Compulsive Eating Behavior and Food Addiction. Elsevier; 2019. pp. 41-81. [DOI: 10.1016/b978-0-12-816207-1.00003-2] [Cited by in Crossref: 2] [Article Influence: 0.7] [Reference Citation Analysis]
9 Negrón-Oyarzo I, Aboitiz F, Fuentealba P. Impaired Functional Connectivity in the Prefrontal Cortex: A Mechanism for Chronic Stress-Induced Neuropsychiatric Disorders. Neural Plast 2016;2016:7539065. [PMID: 26904302 DOI: 10.1155/2016/7539065] [Cited by in Crossref: 41] [Cited by in F6Publishing: 38] [Article Influence: 6.8] [Reference Citation Analysis]
10 Vahid-Ansari F, Albert PR. Chronic Fluoxetine Induces Activity Changes in Recovery From Poststroke Anxiety, Depression, and Cognitive Impairment. Neurotherapeutics 2018;15:200-15. [PMID: 29204954 DOI: 10.1007/s13311-017-0590-3] [Cited by in Crossref: 13] [Cited by in F6Publishing: 16] [Article Influence: 4.3] [Reference Citation Analysis]
11 Krukowski K, Nolan A, Frias ES, Grue K, Becker M, Ureta G, Delgado L, Bernales S, Sohal VS, Walter P, Rosi S. Integrated Stress Response Inhibitor Reverses Sex-Dependent Behavioral and Cell-Specific Deficits after Mild Repetitive Head Trauma. J Neurotrauma 2020;37:1370-80. [PMID: 31884883 DOI: 10.1089/neu.2019.6827] [Cited by in Crossref: 16] [Cited by in F6Publishing: 12] [Article Influence: 8.0] [Reference Citation Analysis]
12 Warthen DM, Lambeth PS, Ottolini M, Shi Y, Barker BS, Gaykema RP, Newmyer BA, Joy-Gaba J, Ohmura Y, Perez-Reyes E, Güler AD, Patel MK, Scott MM. Activation of Pyramidal Neurons in Mouse Medial Prefrontal Cortex Enhances Food-Seeking Behavior While Reducing Impulsivity in the Absence of an Effect on Food Intake. Front Behav Neurosci 2016;10:63. [PMID: 27065827 DOI: 10.3389/fnbeh.2016.00063] [Cited by in Crossref: 21] [Cited by in F6Publishing: 22] [Article Influence: 3.5] [Reference Citation Analysis]
13 Xie L, Liu Y, Hu Y, Wang B, Zhu Z, Jiang Y, Suo Y, Hu M, Gao J, Ullah R, Hu Z. Neonatal sevoflurane exposure induces impulsive behavioral deficit through disrupting excitatory neurons in the medial prefrontal cortex in mice. Transl Psychiatry 2020;10:202. [PMID: 32564056 DOI: 10.1038/s41398-020-00884-5] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
14 Jiang J, Zheng Y, Chen Y, Zahra A, Long C, Yang L. Exposure to prenatal antidepressant alters medial prefrontal-striatal synchronization in mice. Brain Research 2019;1717:27-34. [DOI: 10.1016/j.brainres.2019.04.008] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
15 Cheng X, Zhao Y, Zheng S, Zhao P, Zou JL, Lin WJ, Wu W, Ye X. Plexin-A1 expression in the inhibitory neurons of infralimbic cortex regulates the specificity of fear memory in male mice. Neuropsychopharmacology 2021. [PMID: 34508226 DOI: 10.1038/s41386-021-01177-1] [Reference Citation Analysis]
16 Kuiper LB, Lucas KA, Mai V, Coolen LM. Enhancement of Drug Seeking Following Drug Taking in a Sexual Context Requires Anterior Cingulate Cortex Activity in Male Rats. Front Behav Neurosci 2020;14:87. [PMID: 32670029 DOI: 10.3389/fnbeh.2020.00087] [Reference Citation Analysis]
17 Liu Z, Wang Y, Cai L, Li Y, Chen B, Dong Y, Huang YH. Prefrontal Cortex to Accumbens Projections in Sleep Regulation of Reward. J Neurosci 2016;36:7897-910. [PMID: 27466335 DOI: 10.1523/JNEUROSCI.0347-16.2016] [Cited by in Crossref: 31] [Cited by in F6Publishing: 18] [Article Influence: 6.2] [Reference Citation Analysis]
18 Morrison KE, Narasimhan S, Fein E, Bale TL. Peripubertal Stress With Social Support Promotes Resilience in the Face of Aging. Endocrinology 2016;157:2002-14. [PMID: 26943365 DOI: 10.1210/en.2015-1876] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 2.2] [Reference Citation Analysis]
19 Miller OH, Bruns A, Ben Ammar I, Mueggler T, Hall BJ. Synaptic Regulation of a Thalamocortical Circuit Controls Depression-Related Behavior. Cell Rep 2017;20:1867-80. [PMID: 28834750 DOI: 10.1016/j.celrep.2017.08.002] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 8.3] [Reference Citation Analysis]
20 Sánchez-González A, Thougaard E, Tapias-Espinosa C, Cañete T, Sampedro-Viana D, Saunders JM, Toneatti R, Tobeña A, Gónzalez-Maeso J, Aznar S, Fernández-Teruel A. Increased thin-spine density in frontal cortex pyramidal neurons in a genetic rat model of schizophrenia-relevant features. Eur Neuropsychopharmacol 2021;44:79-91. [PMID: 33485732 DOI: 10.1016/j.euroneuro.2021.01.006] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 3.0] [Reference Citation Analysis]
21 McCullough KM, Morrison FG, Ressler KJ. Bridging the Gap: Towards a cell-type specific understanding of neural circuits underlying fear behaviors. Neurobiol Learn Mem 2016;135:27-39. [PMID: 27470092 DOI: 10.1016/j.nlm.2016.07.025] [Cited by in Crossref: 27] [Cited by in F6Publishing: 26] [Article Influence: 4.5] [Reference Citation Analysis]
22 Margetts-Smith G, Macnaghten AI, Brebner LS, Ziminski JJ, Sieburg MC, Grimm JW, Crombag HS, Koya E. Acute, but not longer-term, exposure to environmental enrichment attenuates Pavlovian cue-evoked conditioned approach and Fos expression in the prefrontal cortex in mice. Eur J Neurosci 2021;53:2580-91. [PMID: 33565633 DOI: 10.1111/ejn.15146] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
23 Che YX, Jin XY, Xiao RH, Zhang M, Ma XH, Guo F, Li Y. Antidepressant-like effects of cinnamamide derivative M2 via D2 receptors in the mouse medial prefrontal cortex. Acta Pharmacol Sin 2022. [PMID: 35079131 DOI: 10.1038/s41401-021-00854-7] [Reference Citation Analysis]
24 Erickson EK, DaCosta AJ, Mason SC, Blednov YA, Mayfield RD, Harris RA. Cortical astrocytes regulate ethanol consumption and intoxication in mice. Neuropsychopharmacology 2021;46:500-8. [PMID: 32464636 DOI: 10.1038/s41386-020-0721-0] [Cited by in Crossref: 21] [Cited by in F6Publishing: 19] [Article Influence: 10.5] [Reference Citation Analysis]
25 Zhou XT, Bao WD, Liu D, Zhu LQ. Targeting the Neuronal Activity of Prefrontal Cortex: New Directions for the Therapy of Depression. Curr Neuropharmacol 2020;18:332-46. [PMID: 31686631 DOI: 10.2174/1570159X17666191101124017] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
26 Zhou X, Hu X, Zhang C, Wang H, Zhu X, Xu L, Sun Z, Yu Y. Aberrant Functional Connectivity and Structural Atrophy in Subcortical Vascular Cognitive Impairment: Relationship with Cognitive Impairments. Front Aging Neurosci 2016;8:14. [PMID: 26869922 DOI: 10.3389/fnagi.2016.00014] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 3.5] [Reference Citation Analysis]
27 Zhou H, Martinez E, Lin HH, Yang R, Dale JA, Liu K, Huang D, Wang J. Inhibition of the Prefrontal Projection to the Nucleus Accumbens Enhances Pain Sensitivity and Affect. Front Cell Neurosci 2018;12:240. [PMID: 30150924 DOI: 10.3389/fncel.2018.00240] [Cited by in Crossref: 20] [Cited by in F6Publishing: 19] [Article Influence: 5.0] [Reference Citation Analysis]
28 Ito A, Yoshida K, Aoki R, Fujii T, Kawasaki I, Hayashi A, Ueno A, Sakai S, Mugikura S, Takahashi S, Mori E. The Role of the Ventromedial Prefrontal Cortex in Preferential Decisions for Own- and Other-Age Faces. Front Psychol 2022;13:822234. [DOI: 10.3389/fpsyg.2022.822234] [Reference Citation Analysis]
29 Saulskaya NB, Burmakina MA, Trofimova NA. Effect of Activation and Blockade of Nitrergic Neurotransmission on Serotonin System Activity of the Rat Medial Prefrontal Cortex. J Evol Biochem Phys 2022;58:500-7. [DOI: 10.1134/s0022093022020181] [Reference Citation Analysis]
30 Chen YW, Wable GS, Chowdhury TG, Aoki C. Enlargement of Axo-Somatic Contacts Formed by GAD-Immunoreactive Axon Terminals onto Layer V Pyramidal Neurons in the Medial Prefrontal Cortex of Adolescent Female Mice Is Associated with Suppression of Food Restriction-Evoked Hyperactivity and Resilience to Activity-Based Anorexia. Cereb Cortex 2016;26:2574-89. [PMID: 25979087 DOI: 10.1093/cercor/bhv087] [Cited by in Crossref: 18] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
31 Navandar M, Martín-García E, Maldonado R, Lutz B, Gerber S, Ruiz de Azua I. Transcriptional signatures in prefrontal cortex confer vulnerability versus resilience to food and cocaine addiction-like behavior. Sci Rep 2021;11:9076. [PMID: 33907201 DOI: 10.1038/s41598-021-88363-9] [Reference Citation Analysis]
32 Giustino TF, Fitzgerald PJ, Maren S. Revisiting propranolol and PTSD: Memory erasure or extinction enhancement? Neurobiol Learn Mem 2016;130:26-33. [PMID: 26808441 DOI: 10.1016/j.nlm.2016.01.009] [Cited by in Crossref: 64] [Cited by in F6Publishing: 54] [Article Influence: 10.7] [Reference Citation Analysis]
33 Oshodi TO, Ben-Azu B, Ishola IO, Ajayi AM, Emokpae O, Umukoro S. Molecular mechanisms involved in the prevention and reversal of ketamine-induced schizophrenia-like behavior by rutin: the role of glutamic acid decarboxylase isoform-67, cholinergic, Nox-2-oxidative stress pathways in mice. Mol Biol Rep 2021;48:2335-50. [PMID: 33811574 DOI: 10.1007/s11033-021-06264-6] [Reference Citation Analysis]
34 Choe KY, Bethlehem RAI, Safrin M, Dong H, Salman E, Li Y, Grinevich V, Golshani P, DeNardo LA, Peñagarikano O, Harris NG, Geschwind DH. Oxytocin normalizes altered circuit connectivity for social rescue of the Cntnap2 knockout mouse. Neuron 2021:S0896-6273(21)00992-2. [PMID: 34932941 DOI: 10.1016/j.neuron.2021.11.031] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
35 de Souza Silva MA, Huston JP, Wang A, Petri D, Chao OY. Evidence for a Specific Integrative Mechanism for Episodic Memory Mediated by AMPA/kainate Receptors in a Circuit Involving Medial Prefrontal Cortex and Hippocampal CA3 Region. Cereb Cortex 2016;26:3000-9. [DOI: 10.1093/cercor/bhv112] [Cited by in Crossref: 22] [Cited by in F6Publishing: 20] [Article Influence: 3.1] [Reference Citation Analysis]
36 Kolb B, Gibb R. Plasticity in the prefrontal cortex of adult rats. Front Cell Neurosci 2015;9:15. [PMID: 25691857 DOI: 10.3389/fncel.2015.00015] [Cited by in Crossref: 39] [Cited by in F6Publishing: 40] [Article Influence: 5.6] [Reference Citation Analysis]
37 Brebner LS, Ziminski JJ, Margetts-Smith G, Sieburg MC, Reeve HM, Nowotny T, Hirrlinger J, Heintz TG, Lagnado L, Kato S, Kobayashi K, Ramsey LA, Hall CN, Crombag HS, Koya E. The Emergence of a Stable Neuronal Ensemble from a Wider Pool of Activated Neurons in the Dorsal Medial Prefrontal Cortex during Appetitive Learning in Mice. J Neurosci 2020;40:395-410. [PMID: 31727794 DOI: 10.1523/JNEUROSCI.1496-19.2019] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 2.7] [Reference Citation Analysis]
38 Zhang Y, Kang Hyae R, Lee SH, Kim Y, Ma R, Jin C, Lim JE, Kim S, Kang Y, Kang H, Kim SY, Kwon SK, Choi SY, Han K. Enhanced Prefrontal Neuronal Activity and Social Dominance Behavior in Postnatal Forebrain Excitatory Neuron-Specific Cyfip2 Knock-Out Mice. Front Mol Neurosci 2020;13:574947. [PMID: 33192297 DOI: 10.3389/fnmol.2020.574947] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
39 Luchicchi A, Mnie-Filali O, Terra H, Bruinsma B, de Kloet SF, Obermayer J, Heistek TS, de Haan R, de Kock CP, Deisseroth K, Pattij T, Mansvelder HD. Sustained Attentional States Require Distinct Temporal Involvement of the Dorsal and Ventral Medial Prefrontal Cortex. Front Neural Circuits 2016;10:70. [PMID: 27630545 DOI: 10.3389/fncir.2016.00070] [Cited by in Crossref: 23] [Cited by in F6Publishing: 19] [Article Influence: 3.8] [Reference Citation Analysis]
40 Orsini CA, Moorman DE, Young JW, Setlow B, Floresco SB. Neural mechanisms regulating different forms of risk-related decision-making: Insights from animal models. Neurosci Biobehav Rev 2015;58:147-67. [PMID: 26072028 DOI: 10.1016/j.neubiorev.2015.04.009] [Cited by in Crossref: 79] [Cited by in F6Publishing: 74] [Article Influence: 11.3] [Reference Citation Analysis]
41 Arslan A. Mapping the Schizophrenia Genes by Neuroimaging: The Opportunities and the Challenges. Int J Mol Sci 2018;19:E219. [PMID: 29324666 DOI: 10.3390/ijms19010219] [Cited by in Crossref: 6] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
42 Ko J. Neuroanatomical Substrates of Rodent Social Behavior: The Medial Prefrontal Cortex and Its Projection Patterns. Front Neural Circuits 2017;11:41. [PMID: 28659766 DOI: 10.3389/fncir.2017.00041] [Cited by in Crossref: 70] [Cited by in F6Publishing: 67] [Article Influence: 14.0] [Reference Citation Analysis]
43 Luchkina NV, Bolshakov VY. Diminishing fear: Optogenetic approach toward understanding neural circuits of fear control. Pharmacol Biochem Behav 2018;174:64-79. [PMID: 28502746 DOI: 10.1016/j.pbb.2017.05.005] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 0.8] [Reference Citation Analysis]
44 Kabir ZD, Che A, Fischer DK, Rice RC, Rizzo BK, Byrne M, Glass MJ, De Marco Garcia NV, Rajadhyaksha AM. Rescue of impaired sociability and anxiety-like behavior in adult cacna1c-deficient mice by pharmacologically targeting eIF2α. Mol Psychiatry 2017;22:1096-109. [PMID: 28584287 DOI: 10.1038/mp.2017.124] [Cited by in Crossref: 59] [Cited by in F6Publishing: 52] [Article Influence: 11.8] [Reference Citation Analysis]
45 Geng KW, He T, Wang RR, Li CL, Luo WJ, Wu FF, Wang Y, Li Z, Lu YF, Guan SM, Chen J. Ethanol Increases Mechanical Pain Sensitivity in Rats via Activation of GABAA Receptors in Medial Prefrontal Cortex. Neurosci Bull 2016;32:433-44. [PMID: 27628528 DOI: 10.1007/s12264-016-0063-4] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
46 Pires J, Nelissen R, Mansvelder HD, Meredith RM. Spontaneous synchronous network activity in the neonatal development of mPFC in mice. Dev Neurobiol 2021;81:207-25. [PMID: 33453138 DOI: 10.1002/dneu.22811] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
47 Coley AA, Padilla-Coreano N, Patel R, Tye KM. Valence processing in the PFC: Reconciling circuit-level and systems-level views. Int Rev Neurobiol 2021;158:171-212. [PMID: 33785145 DOI: 10.1016/bs.irn.2020.12.002] [Reference Citation Analysis]
48 Yankouskaya A, Denholm-smith T, Yi D, Greenshaw AJ, Cao B, Sui J. Neural Connectivity Underlying Reward and Emotion-Related Processing: Evidence From a Large-Scale Network Analysis. Front Syst Neurosci 2022;16:833625. [DOI: 10.3389/fnsys.2022.833625] [Reference Citation Analysis]
49 Anderson EM, Loke S, Wrucke B, Engelhardt A, Demis S, O'Reilly K, Hess E, Wickman K, Hearing MC. Suppression of pyramidal neuron G protein-gated inwardly rectifying K+ channel signaling impairs prelimbic cortical function and underlies stress-induced deficits in cognitive flexibility in male, but not female, mice. Neuropsychopharmacology 2021. [PMID: 34158613 DOI: 10.1038/s41386-021-01063-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
50 Fan LL, Deng B, Yan JB, Hu ZH, Ren AH, Yang DW. Lesions of mediodorsal thalamic nucleus reverse abnormal firing of the medial prefrontal cortex neurons in parkinsonian rats. Neural Regen Res 2019;14:1635-42. [PMID: 31089064 DOI: 10.4103/1673-5374.255982] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
51 Lee SH, Zhang Y, Park J, Kim B, Kim Y, Lee SH, Kim GH, Huh YH, Lee B, Kim Y, Lee Y, Kim JY, Kang H, Choi SY, Jang S, Li Y, Kim S, Jin C, Pang K, Kim E, Lee Y, Kim H, Kim E, Choi JH, Kim J, Lee KJ, Choi SY, Han K. Haploinsufficiency of Cyfip2 Causes Lithium-Responsive Prefrontal Dysfunction. Ann Neurol 2020;88:526-43. [PMID: 32562430 DOI: 10.1002/ana.25827] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
52 Pfarr S, Schaaf L, Reinert JK, Paul E, Herrmannsdörfer F, Roßmanith M, Kuner T, Hansson AC, Spanagel R, Körber C, Sommer WH. Choice for Drug or Natural Reward Engages Largely Overlapping Neuronal Ensembles in the Infralimbic Prefrontal Cortex. J Neurosci 2018;38:3507-19. [PMID: 29483279 DOI: 10.1523/JNEUROSCI.0026-18.2018] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 5.3] [Reference Citation Analysis]
53 Li M, Long C, Yang L. Hippocampal-prefrontal circuit and disrupted functional connectivity in psychiatric and neurodegenerative disorders. Biomed Res Int 2015;2015:810548. [PMID: 25918722 DOI: 10.1155/2015/810548] [Cited by in Crossref: 14] [Cited by in F6Publishing: 30] [Article Influence: 2.0] [Reference Citation Analysis]
54 Faye C, Hen R, Guiard BP, Denny CA, Gardier AM, Mendez-David I, David DJ. Rapid Anxiolytic Effects of RS67333, a Serotonin Type 4 Receptor Agonist, and Diazepam, a Benzodiazepine, Are Mediated by Projections From the Prefrontal Cortex to the Dorsal Raphe Nucleus. Biol Psychiatry 2020;87:514-25. [PMID: 31623825 DOI: 10.1016/j.biopsych.2019.08.009] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
55 McEown K, Takata Y, Cherasse Y, Nagata N, Aritake K, Lazarus M. Chemogenetic inhibition of the medial prefrontal cortex reverses the effects of REM sleep loss on sucrose consumption. Elife 2016;5:e20269. [PMID: 27919319 DOI: 10.7554/eLife.20269] [Cited by in Crossref: 8] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
56 Bittar TP, Labonté B. Functional Contribution of the Medial Prefrontal Circuitry in Major Depressive Disorder and Stress-Induced Depressive-Like Behaviors. Front Behav Neurosci 2021;15:699592. [PMID: 34234655 DOI: 10.3389/fnbeh.2021.699592] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
57 Vargas MV, Meyer R, Avanes AA, Rus M, Olson DE. Psychedelics and Other Psychoplastogens for Treating Mental Illness. Front Psychiatry 2021;12:727117. [PMID: 34671279 DOI: 10.3389/fpsyt.2021.727117] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
58 Avery SN, Blackford JU. Slow to warm up: the role of habituation in social fear. Soc Cogn Affect Neurosci 2016;11:1832-40. [PMID: 27445209 DOI: 10.1093/scan/nsw095] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 3.7] [Reference Citation Analysis]
59 Anderzhanova E, Kirmeier T, Wotjak CT. Animal models in psychiatric research: The RDoC system as a new framework for endophenotype-oriented translational neuroscience. Neurobiol Stress 2017;7:47-56. [PMID: 28377991 DOI: 10.1016/j.ynstr.2017.03.003] [Cited by in Crossref: 56] [Cited by in F6Publishing: 44] [Article Influence: 11.2] [Reference Citation Analysis]
60 Vahid-Ansari F, Lagace DC, Albert PR. Persistent post-stroke depression in mice following unilateral medial prefrontal cortical stroke. Transl Psychiatry 2016;6:e863. [PMID: 27483381 DOI: 10.1038/tp.2016.124] [Cited by in Crossref: 48] [Cited by in F6Publishing: 43] [Article Influence: 8.0] [Reference Citation Analysis]
61 Kuiper LB, Frohmader KS, Coolen LM. Maladaptive Sexual Behavior Following Concurrent Methamphetamine and Sexual Experience in Male Rats is Associated with Altered Neural Activity in Frontal Cortex. Neuropsychopharmacology 2017;42:2011-20. [PMID: 28051103 DOI: 10.1038/npp.2017.1] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.2] [Reference Citation Analysis]
62 Watt MJ, Weber MA, Davies SR, Forster GL. Impact of juvenile chronic stress on adult cortico-accumbal function: Implications for cognition and addiction. Prog Neuropsychopharmacol Biol Psychiatry 2017;79:136-54. [PMID: 28642080 DOI: 10.1016/j.pnpbp.2017.06.015] [Cited by in Crossref: 29] [Cited by in F6Publishing: 22] [Article Influence: 5.8] [Reference Citation Analysis]
63 Kabir ZD, Lee AS, Rajadhyaksha AM. L-type Ca2+ channels in mood, cognition and addiction: integrating human and rodent studies with a focus on behavioural endophenotypes. J Physiol 2016;594:5823-37. [PMID: 26913808 DOI: 10.1113/JP270673] [Cited by in Crossref: 32] [Cited by in F6Publishing: 22] [Article Influence: 5.3] [Reference Citation Analysis]
64 Zhu W, Ge X, Gao P, Li M, Guan Y, Guan X. Adolescent cocaine exposure induces prolonged synaptic modifications in medial prefrontal cortex of adult rats. Brain Struct Funct 2018;223:1829-38. [PMID: 29247260 DOI: 10.1007/s00429-017-1590-0] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
65 Zhang W, Guo L, Liu D, Xu G. The dynamic properties of a brain network during working memory based on the algorithm of cross-frequency coupling. Cogn Neurodyn 2020;14:215-28. [PMID: 32226563 DOI: 10.1007/s11571-019-09562-9] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 3.0] [Reference Citation Analysis]
66 Bittar TP, Pelaez MC, Hernandez Silva JC, Quessy F, Lavigne AA, Morency D, Blanchette LJ, Arsenault E, Cherasse Y, Seigneur J, Timofeev I, Sephton CF, Proulx CD, Labonté B. Chronic Stress Induces Sex-Specific Functional and Morphological Alterations in Corticoaccumbal and Corticotegmental Pathways. Biol Psychiatry 2021;90:194-205. [PMID: 33867113 DOI: 10.1016/j.biopsych.2021.02.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 8.0] [Reference Citation Analysis]
67 Wang M, Gallo NB, Tai Y, Li B, Van Aelst L. Oligophrenin-1 moderates behavioral responses to stress by regulating parvalbumin interneuron activity in the medial prefrontal cortex. Neuron 2021;109:1636-1656.e8. [PMID: 33831348 DOI: 10.1016/j.neuron.2021.03.016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
68 Shyu BC, Gao ZY, Wu JJ, He ABH, Cheng CN, Huang ACW. Methamphetamine and Modulation Functionality of the Prelimbic Cortex for Developing a Possible Treatment of Alzheimer's Disease in an Animal Model. Front Aging Neurosci 2021;13:751913. [PMID: 34744692 DOI: 10.3389/fnagi.2021.751913] [Reference Citation Analysis]
69 Luchkina NV, Bolshakov VY. Mechanisms of fear learning and extinction: synaptic plasticity-fear memory connection. Psychopharmacology (Berl) 2019;236:163-82. [PMID: 30415278 DOI: 10.1007/s00213-018-5104-4] [Cited by in Crossref: 20] [Cited by in F6Publishing: 20] [Article Influence: 5.0] [Reference Citation Analysis]
70 Guirado R, Perez-Rando M, Ferragud A, Gutierrez-Castellanos N, Umemori J, Carceller H, Nacher J, Castillo-Gómez E. A Critical Period for Prefrontal Network Configurations Underlying Psychiatric Disorders and Addiction. Front Behav Neurosci 2020;14:51. [PMID: 32317945 DOI: 10.3389/fnbeh.2020.00051] [Cited by in Crossref: 6] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
71 Strauss M, O'Donovan B, Ma Y, Xiao Z, Lin S, Bardo MT, Ortinski PI, McLaughlin JP, Zhu J. [3H]Dopamine Uptake through the Dopamine and Norepinephrine Transporters is Decreased in the Prefrontal Cortex of Transgenic Mice Expressing HIV-1 Transactivator of Transcription Protein. J Pharmacol Exp Ther 2020;374:241-51. [PMID: 32461322 DOI: 10.1124/jpet.120.266023] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 3.5] [Reference Citation Analysis]
72 Haddar M, Uno K, Azuma K, Muramatsu SI, Nitta A. Inhibitory effects of Shati/Nat8l overexpression in the medial prefrontal cortex on methamphetamine-induced conditioned place preference in mice. Addict Biol 2020;25:e12749. [PMID: 30950164 DOI: 10.1111/adb.12749] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 5.0] [Reference Citation Analysis]
73 Giustino TF, Maren S. The Role of the Medial Prefrontal Cortex in the Conditioning and Extinction of Fear. Front Behav Neurosci 2015;9:298. [PMID: 26617500 DOI: 10.3389/fnbeh.2015.00298] [Cited by in Crossref: 227] [Cited by in F6Publishing: 223] [Article Influence: 32.4] [Reference Citation Analysis]
74 Hammad AM, Althobaiti YS, Das SC, Sari Y. Effects of repeated cocaine exposure and withdrawal on voluntary ethanol drinking, and the expression of glial glutamate transporters in mesocorticolimbic system of P rats. Mol Cell Neurosci 2017;82:58-65. [PMID: 28442364 DOI: 10.1016/j.mcn.2017.04.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 2.2] [Reference Citation Analysis]
75 Hearing M. Prefrontal-accumbens opioid plasticity: Implications for relapse and dependence. Pharmacol Res 2019;139:158-65. [PMID: 30465850 DOI: 10.1016/j.phrs.2018.11.012] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.8] [Reference Citation Analysis]
76 Estebanez L, Kremkow J, Poulet JF. Matching Cell Type to Function in Cortical Circuits. Neuron 2015;87:249-51. [PMID: 26182411 DOI: 10.1016/j.neuron.2015.06.039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.1] [Reference Citation Analysis]
77 Ali M, Cholvin T, Muller MA, Cosquer B, Kelche C, Cassel J, Pereira de Vasconcelos A. Environmental enrichment enhances systems-level consolidation of a spatial memory after lesions of the ventral midline thalamus. Neurobiology of Learning and Memory 2017;141:108-23. [DOI: 10.1016/j.nlm.2017.03.021] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 2.4] [Reference Citation Analysis]
78 Jin J, Chen Q, Qiao Q, Yang L, Xiong J, Xia J, Hu Z, Chen F. Orexin neurons in the lateral hypothalamus project to the medial prefrontal cortex with a rostro-caudal gradient. Neurosci Lett 2016;621:9-14. [PMID: 27048712 DOI: 10.1016/j.neulet.2016.04.002] [Cited by in Crossref: 20] [Cited by in F6Publishing: 15] [Article Influence: 3.3] [Reference Citation Analysis]
79 Todorović N, Mićić B, Schwirtlich M, Stevanović M, Filipović D. Subregion-specific Protective Effects of Fluoxetine and Clozapine on Parvalbumin Expression in Medial Prefrontal Cortex of Chronically Isolated Rats. Neuroscience 2019;396:24-35. [PMID: 30448452 DOI: 10.1016/j.neuroscience.2018.11.008] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
80 Grimaud J, Lledo PM. Illuminating odors: when optogenetics brings to light unexpected olfactory abilities. Learn Mem 2016;23:249-54. [PMID: 27194792 DOI: 10.1101/lm.041269.115] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
81 Aleksandrova LR, Wang YT, Phillips AG. Evaluation of the Wistar-Kyoto rat model of depression and the role of synaptic plasticity in depression and antidepressant response. Neuroscience & Biobehavioral Reviews 2019;105:1-23. [DOI: 10.1016/j.neubiorev.2019.07.007] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 6.3] [Reference Citation Analysis]
82 Lin Z, You F, Li T, Feng Y, Zhao X, Yang J, Yao Z, Gao Y, Chen JF. Entrainment of Astrocytic and Neuronal Ca2+ Population Dynamics During Information Processing of Working Memory in Mice. Neurosci Bull 2021. [PMID: 34699030 DOI: 10.1007/s12264-021-00782-w] [Reference Citation Analysis]
83 McCool BA. Ethanol modulation of cortico-basolateral amygdala circuits: Neurophysiology and behavior. Neuropharmacology 2021;197:108750. [PMID: 34371080 DOI: 10.1016/j.neuropharm.2021.108750] [Reference Citation Analysis]
84 Kinlein SA, Wallace NK, Savenkova MI, Karatsoreos IN. Chronic hypothalamic-pituitary-adrenal axis disruption alters glutamate homeostasis and neural responses to stress in male C57Bl6/N mice. Neurobiology of Stress 2022. [DOI: 10.1016/j.ynstr.2022.100466] [Reference Citation Analysis]
85 Dale J, Zhou H, Zhang Q, Martinez E, Hu S, Liu K, Urien L, Chen Z, Wang J. Scaling Up Cortical Control Inhibits Pain. Cell Rep 2018;23:1301-13. [PMID: 29719246 DOI: 10.1016/j.celrep.2018.03.139] [Cited by in Crossref: 26] [Cited by in F6Publishing: 25] [Article Influence: 8.7] [Reference Citation Analysis]
86 Avery SN, Clauss JA, Blackford JU. The Human BNST: Functional Role in Anxiety and Addiction. Neuropsychopharmacology 2016;41:126-41. [PMID: 26105138 DOI: 10.1038/npp.2015.185] [Cited by in Crossref: 157] [Cited by in F6Publishing: 149] [Article Influence: 22.4] [Reference Citation Analysis]
87 Salling MC, Skelly MJ, Avegno E, Regan S, Zeric T, Nichols E, Harrison NL. Alcohol Consumption during Adolescence in a Mouse Model of Binge Drinking Alters the Intrinsic Excitability and Function of the Prefrontal Cortex through a Reduction in the Hyperpolarization-Activated Cation Current. J Neurosci 2018;38:6207-22. [PMID: 29915134 DOI: 10.1523/JNEUROSCI.0550-18.2018] [Cited by in Crossref: 33] [Cited by in F6Publishing: 14] [Article Influence: 8.3] [Reference Citation Analysis]
88 Yuan S, Wu H, Wu Y, Xu H, Yu J, Zhong Y, Zhang N, Li J, Xu Q, Wang C. Neural Effects of Cognitive Behavioral Therapy in Psychiatric Disorders: A Systematic Review and Activation Likelihood Estimation Meta-Analysis. Front Psychol 2022;13:853804. [PMID: 35592157 DOI: 10.3389/fpsyg.2022.853804] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
89 Yin F, Zhang J, Lu Y, Zhang Y, Liu J, Deji C, Qiao X, Gao K, Xu M, Lai J, Wang Y. Modafinil rescues repeated morphine-induced synaptic and behavioural impairments via activation of D1R-ERK-CREB pathway in medial prefrontal cortex. Addict Biol 2022;27:e13103. [PMID: 34647651 DOI: 10.1111/adb.13103] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
90 Lee MY, Lin YR, Tu YS, Tseng YJ, Chan MH, Chen HH. Effects of sarcosine and N, N-dimethylglycine on NMDA receptor-mediated excitatory field potentials. J Biomed Sci 2017;24:18. [PMID: 28245819 DOI: 10.1186/s12929-016-0314-8] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
91 Goubran M, Leuze C, Hsueh B, Aswendt M, Ye L, Tian Q, Cheng MY, Crow A, Steinberg GK, McNab JA, Deisseroth K, Zeineh M. Multimodal image registration and connectivity analysis for integration of connectomic data from microscopy to MRI. Nat Commun 2019;10:5504. [PMID: 31796741 DOI: 10.1038/s41467-019-13374-0] [Cited by in Crossref: 22] [Cited by in F6Publishing: 18] [Article Influence: 7.3] [Reference Citation Analysis]
92 Chao OY, de Souza Silva MA, Yang YM, Huston JP. The medial prefrontal cortex - hippocampus circuit that integrates information of object, place and time to construct episodic memory in rodents: Behavioral, anatomical and neurochemical properties. Neurosci Biobehav Rev 2020;113:373-407. [PMID: 32298711 DOI: 10.1016/j.neubiorev.2020.04.007] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 6.5] [Reference Citation Analysis]
93 Cheng Z, Cui R, Ge T, Yang W, Li B. Optogenetics: What it has uncovered in potential pathways of depression. Pharmacological Research 2020;152:104596. [DOI: 10.1016/j.phrs.2019.104596] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
94 Chen S, Song Y, Xu W, Hu G, Ge H, Xue C, Gao J, Qi W, Lin X, Chen J; Alzheimer’s Disease Neuroimaging Initiative. Impaired Memory Awareness and Loss Integration in Self-Referential Network Across the Progression of Alzheimer's Disease Spectrum. J Alzheimers Dis 2021;83:111-26. [PMID: 34250942 DOI: 10.3233/JAD-210541] [Reference Citation Analysis]
95 Lee EH, Han PL. Reciprocal interactions across and within multiple levels of monoamine and cortico-limbic systems in stress-induced depression: A systematic review. Neurosci Biobehav Rev 2019;101:13-31. [PMID: 30917923 DOI: 10.1016/j.neubiorev.2019.03.014] [Cited by in Crossref: 16] [Cited by in F6Publishing: 15] [Article Influence: 5.3] [Reference Citation Analysis]
96 Maldonado R, Calvé P, García-Blanco A, Domingo-Rodriguez L, Senabre E, Martín-García E. Vulnerability to addiction. Neuropharmacology 2021;186:108466. [PMID: 33482225 DOI: 10.1016/j.neuropharm.2021.108466] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
97 Kiss B, Laszlovszky I, Krámos B, Visegrády A, Bobok A, Lévay G, Lendvai B, Román V. Neuronal Dopamine D3 Receptors: Translational Implications for Preclinical Research and CNS Disorders. Biomolecules 2021;11:104. [PMID: 33466844 DOI: 10.3390/biom11010104] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
98 Nishijima H, Ueno T, Ueno S, Mori F, Miki Y, Tomiyama M. Levodopa-induced morphologic changes of prefrontal pyramidal tract-type neurons in a rat model of Parkinson's disease. Neurosci Res 2017;115:54-8. [PMID: 27773835 DOI: 10.1016/j.neures.2016.10.001] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
99 Stutz B, Waterson MJ, Šestan-Peša M, Dietrich MO, Škarica M, Sestan N, Racz B, Magyar A, Sotonyi P, Liu ZW, Gao XB, Matyas F, Stoiljkovic M, Horvath TL. AgRP neurons control structure and function of the medial prefrontal cortex. Mol Psychiatry 2022. [PMID: 35906488 DOI: 10.1038/s41380-022-01691-8] [Reference Citation Analysis]
100 Stubbendorff C, Molano-Mazon M, Young AMJ, Gerdjikov TV. Synchronization in the prefrontal-striatal circuit tracks behavioural choice in a go-no-go task in rats. Eur J Neurosci 2019;49:701-11. [PMID: 29520856 DOI: 10.1111/ejn.13905] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
101 Murkar A, De Koninck J, Merali Z. Cannabinoids: Revealing their complexity and role in central networks of fear and anxiety. Neurosci Biobehav Rev 2021;131:30-46. [PMID: 34487746 DOI: 10.1016/j.neubiorev.2021.09.002] [Reference Citation Analysis]
102 Lei Y, Wang J, Wang D, Li C, Liu B, Fang X, You J, Guo M, Lu XY. SIRT1 in forebrain excitatory neurons produces sexually dimorphic effects on depression-related behaviors and modulates neuronal excitability and synaptic transmission in the medial prefrontal cortex. Mol Psychiatry 2020;25:1094-111. [PMID: 30705425 DOI: 10.1038/s41380-019-0352-1] [Cited by in Crossref: 40] [Cited by in F6Publishing: 36] [Article Influence: 13.3] [Reference Citation Analysis]
103 Matheus FC, Rial D, Real JI, Lemos C, Takahashi RN, Bertoglio LJ, Cunha RA, Prediger RD. Temporal Dissociation of Striatum and Prefrontal Cortex Uncouples Anhedonia and Defense Behaviors Relevant to Depression in 6-OHDA-Lesioned Rats. Mol Neurobiol 2016;53:3891-9. [DOI: 10.1007/s12035-015-9330-z] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 2.7] [Reference Citation Analysis]
104 Tang J, Lu L, Wang Q, Liu H, Xue W, Zhou T, Xu L, Wang K, Wu D, Wei F, Tao W, Chen G. Crocin Reverses Depression-Like Behavior in Parkinson Disease Mice via VTA-mPFC Pathway. Mol Neurobiol 2020;57:3158-70. [DOI: 10.1007/s12035-020-01941-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
105 Ding C, Emmenegger V, Schaffrath K, Feldmeyer D. Layer-Specific Inhibitory Microcircuits of Layer 6 Interneurons in Rat Prefrontal Cortex. Cereb Cortex 2021;31:32-47. [PMID: 32829414 DOI: 10.1093/cercor/bhaa201] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
106 Ye X, Kapeller-Libermann D, Travaglia A, Inda MC, Alberini CM. Direct dorsal hippocampal-prelimbic cortex connections strengthen fear memories. Nat Neurosci 2017;20:52-61. [PMID: 27869801 DOI: 10.1038/nn.4443] [Cited by in Crossref: 58] [Cited by in F6Publishing: 61] [Article Influence: 9.7] [Reference Citation Analysis]
107 Haddar M, Azuma K, Izuo N, Kyosuke U, Asano T, Muramatsu SI, Nitta A. Impairment of cognitive function induced by Shati/Nat8l overexpression in the prefrontal cortex of mice. Behav Brain Res 2021;397:112938. [PMID: 32998043 DOI: 10.1016/j.bbr.2020.112938] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
108 Chen P, Chen G, Zhong S, Chen F, Ye T, Gong J, Tang G, Pan Y, Luo Z, Qi Z, Huang L, Wang Y. Thyroid hormones disturbances, cognitive deficits and abnormal dynamic functional connectivity variability of the amygdala in unmedicated bipolar disorder. Journal of Psychiatric Research 2022. [DOI: 10.1016/j.jpsychires.2022.03.023] [Reference Citation Analysis]
109 Jin C, Kang H, Ryu JR, Kim S, Zhang Y, Lee Y, Kim Y, Han K. Integrative Brain Transcriptome Analysis Reveals Region-Specific and Broad Molecular Changes in Shank3-Overexpressing Mice. Front Mol Neurosci 2018;11:250. [PMID: 30233305 DOI: 10.3389/fnmol.2018.00250] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
110 Dominguez-Paredes D, Jahanshahi A, Kozielski KL. Translational considerations for the design of untethered nanomaterials in human neural stimulation. Brain Stimul 2021;14:1285-97. [PMID: 34375694 DOI: 10.1016/j.brs.2021.08.001] [Reference Citation Analysis]
111 Anderson EM, Demis S, Wrucke B, Engelhardt A, Hearing MC. Infralimbic cortex pyramidal neuron GIRK signaling contributes to regulation of cognitive flexibility but not affect-related behavior in male mice. Physiol Behav 2021;242:113597. [PMID: 34536435 DOI: 10.1016/j.physbeh.2021.113597] [Reference Citation Analysis]
112 Nishijima H, Ueno T, Funamizu Y, Ueno S, Tomiyama M. Levodopa treatment and dendritic spine pathology. Mov Disord 2018;33:877-88. [PMID: 28880414 DOI: 10.1002/mds.27172] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 3.8] [Reference Citation Analysis]
113 Wang N, Ge F, Cui C, Li Y, Sun X, Sun L, Wang X, Liu S, Zhang H, Liu Y, Jia M, Yang M. Role of Glutamatergic Projections from the Ventral CA1 to Infralimbic Cortex in Context-Induced Reinstatement of Heroin Seeking. Neuropsychopharmacology 2018;43:1373-84. [PMID: 29134962 DOI: 10.1038/npp.2017.279] [Cited by in Crossref: 19] [Cited by in F6Publishing: 17] [Article Influence: 3.8] [Reference Citation Analysis]
114 Howell CJ, Sceniak MP, Lang M, Krakowiecki W, Abouelsoud FE, Lad SU, Yu H, Katz DM. Activation of the Medial Prefrontal Cortex Reverses Cognitive and Respiratory Symptoms in a Mouse Model of Rett Syndrome. eNeuro 2017;4:ENEURO. [PMID: 29333487 DOI: 10.1523/ENEURO.0277-17.2017] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 2.3] [Reference Citation Analysis]
115 Zhong H, Xu H, Li X, Xie RG, Shi Y, Wang Y, Tong L, Zhu Q, Han J, Tao H, Zhang L, Hu Z, Zhang X, Gu N, Dong H, Xu X. A role of prefrontal cortico-hypothalamic projections in wake promotion. Cereb Cortex 2022:bhac258. [PMID: 35764255 DOI: 10.1093/cercor/bhac258] [Reference Citation Analysis]
116 Pati S, Sood A, Mukhopadhyay S, Vaidya VA. Acute pharmacogenetic activation of medial prefrontal cortex excitatory neurons regulates anxiety-like behaviour. J Biosci 2018;43:85-95. [DOI: 10.1007/s12038-018-9732-y] [Cited by in Crossref: 23] [Cited by in F6Publishing: 9] [Article Influence: 5.8] [Reference Citation Analysis]
117 Freitas AE, Heinrich IA, Moura TM, Fraga DB, Costa AP, Azevedo D, Brocardo PS, Kaster MP, Leal RB, Rodrigues ALS. Agmatine potentiates antidepressant and synaptic actions of ketamine: Effects on dendritic arbors and spines architecture and Akt/S6 kinase signaling. Experimental Neurology 2020;333:113398. [DOI: 10.1016/j.expneurol.2020.113398] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
118 Csabai D, Wiborg O, Czéh B. Reduced Synapse and Axon Numbers in the Prefrontal Cortex of Rats Subjected to a Chronic Stress Model for Depression. Front Cell Neurosci 2018;12:24. [PMID: 29440995 DOI: 10.3389/fncel.2018.00024] [Cited by in Crossref: 33] [Cited by in F6Publishing: 32] [Article Influence: 8.3] [Reference Citation Analysis]
119 Nolan A, Hennessy E, Krukowski K, Guglielmetti C, Chaumeil MM, Sohal VS, Rosi S. Repeated Mild Head Injury Leads to Wide-Ranging Deficits in Higher-Order Cognitive Functions Associated with the Prefrontal Cortex. J Neurotrauma 2018;35:2425-34. [PMID: 29732949 DOI: 10.1089/neu.2018.5731] [Cited by in Crossref: 21] [Cited by in F6Publishing: 18] [Article Influence: 5.3] [Reference Citation Analysis]
120 Marchisella F, Creutzberg KC, Begni V, Sanson A, Wearick-Silva LE, Tractenberg SG, Orso R, Kestering-Ferreira É, Grassi-Oliveira R, Riva MA. Exposure to Prenatal Stress Is Associated With an Excitatory/Inhibitory Imbalance in Rat Prefrontal Cortex and Amygdala and an Increased Risk for Emotional Dysregulation. Front Cell Dev Biol 2021;9:653384. [PMID: 34141707 DOI: 10.3389/fcell.2021.653384] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
121 Wihan J, Grosch J, Kalinichenko LS, Müller CP, Winkler J, Kohl Z. Layer-specific axonal degeneration of serotonergic fibers in the prefrontal cortex of aged A53T α-synuclein–expressing mice. Neurobiology of Aging 2019;80:29-37. [DOI: 10.1016/j.neurobiolaging.2019.03.014] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 2.7] [Reference Citation Analysis]
122 Mazurkiewicz M, Kambham A, Pace B, Skwarzynska D, Wagley P, Burnsed J. Neuronal activity mapping during exploration of a novel environment. Brain Res 2021;1776:147748. [PMID: 34896333 DOI: 10.1016/j.brainres.2021.147748] [Reference Citation Analysis]
123 Sartim A, Moreira F, Joca S. Involvement of CB 1 and TRPV1 receptors located in the ventral medial prefrontal cortex in the modulation of stress coping behavior. Neuroscience 2017;340:126-34. [DOI: 10.1016/j.neuroscience.2016.10.031] [Cited by in Crossref: 14] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
124 Evrard MR, Li M, Shen H, Smith SS. Preventing adolescent synaptic pruning in mouse prelimbic cortex via local knockdown of α4βδ GABAA receptors increases anxiety response in adulthood. Sci Rep 2021;11:21059. [PMID: 34702942 DOI: 10.1038/s41598-021-99965-8] [Reference Citation Analysis]
125 Xu P, Chen A, Li Y, Xing X, Lu H. Medial prefrontal cortex in neurological diseases. Physiol Genomics 2019;51:432-42. [PMID: 31373533 DOI: 10.1152/physiolgenomics.00006.2019] [Cited by in Crossref: 12] [Cited by in F6Publishing: 14] [Article Influence: 4.0] [Reference Citation Analysis]