BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Grieb B, von Nicolai C, Engler G, Sharott A, Papageorgiou I, Hamel W, Engel AK, Moll CK. Decomposition of abnormal free locomotor behavior in a rat model of Parkinson's disease. Front Syst Neurosci 2013;7:95. [PMID: 24348346 DOI: 10.3389/fnsys.2013.00095] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 1.1] [Reference Citation Analysis]
Number Citing Articles
1 Hunt J, Coulson EJ, Rajnarayanan R, Oster H, Videnovic A, Rawashdeh O. Sleep and circadian rhythms in Parkinson's disease and preclinical models. Mol Neurodegener 2022;17:2. [PMID: 35000606 DOI: 10.1186/s13024-021-00504-w] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Swanson OK, Semaan R, Maffei A. Reduced Dopamine Signaling Impacts Pyramidal Neuron Excitability in Mouse Motor Cortex. eNeuro 2021;8:ENEURO. [PMID: 34556558 DOI: 10.1523/ENEURO.0548-19.2021] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
3 Florio TM. Stereotyped, automatized and habitual behaviours: are they similar constructs under the control of the same cerebral areas? AIMS Neurosci 2020;7:136-52. [PMID: 32607417 DOI: 10.3934/Neuroscience.2020010] [Reference Citation Analysis]
4 Choi JG, Huh E, Ju IG, Kim N, Yun J, Oh MS. 1-Methyl-4-phenyl-1,2,3,6 tetrahydropyridine/probenecid impairs intestinal motility and olfaction in the early stages of Parkinson's disease in mice. Journal of the Neurological Sciences 2018;392:77-82. [DOI: 10.1016/j.jns.2018.07.011] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
5 Liu B, Lv C, Zhang J, Liu Y, Sun J, Cheng X, Mao W, Ma Y, Li S. Effects of eldepryl on glial cell proliferation and activation in the substantia nigra and striatum in a rat model of Parkinson’s disease. Neurological Research 2017;39:459-67. [DOI: 10.1080/01616412.2017.1297911] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
6 Noor NA, Mohammed HS, Mourad IM, Khadrawy YA, Aboul Ezz HS. A promising therapeutic potential of cerebrolysin in 6-OHDA rat model of Parkinson's disease. Life Sciences 2016;155:174-9. [DOI: 10.1016/j.lfs.2016.05.022] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 1.8] [Reference Citation Analysis]
7 Chabert C, Bottelin P, Pison C, Dubouchaud H. A low-cost system to easily measure spontaneous physical activity in rodents. Journal of Applied Physiology 2016;120:1097-103. [DOI: 10.1152/japplphysiol.00888.2015] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
8 Liu B, Sun J, Zhang J, Mao W, Ma Y, Li S, Cheng X, Lv C. Autophagy-related protein expression in the substantia nigra and eldepryl intervention in rat models of Parkinson׳s disease. Brain Research 2015;1625:180-8. [DOI: 10.1016/j.brainres.2015.08.033] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 0.4] [Reference Citation Analysis]
9 da Silva AI, Braz GRF, Pedroza AA, Nascimento L, Freitas CM, Ferreira DJS, Manhães de Castro R, Lagranha CJ. Fluoxetine induces lean phenotype in rat by increasing the brown/white adipose tissue ratio and UCP1 expression. J Bioenerg Biomembr 2015;47:309-18. [DOI: 10.1007/s10863-015-9617-9] [Cited by in Crossref: 19] [Cited by in F6Publishing: 19] [Article Influence: 2.7] [Reference Citation Analysis]
10 Campbell JC, Jeyamohan SB, Cruz PDL, Chen N, Shin D, Pilitsis JG. Place conditioning to apomorphine in rat models of Parkinson's disease: Differences by dose and side-effect expression. Behavioural Brain Research 2014;275:114-9. [DOI: 10.1016/j.bbr.2014.09.002] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 0.9] [Reference Citation Analysis]
11 von Wrangel C, Schwabe K, John N, Krauss JK, Alam M. The rotenone-induced rat model of Parkinson's disease: behavioral and electrophysiological findings. Behav Brain Res 2015;279:52-61. [PMID: 25446762 DOI: 10.1016/j.bbr.2014.11.002] [Cited by in Crossref: 49] [Cited by in F6Publishing: 56] [Article Influence: 6.1] [Reference Citation Analysis]
12 Moustafa AA, Bar-Gad I, Korngreen A, Bergman H. Basal ganglia: physiological, behavioral, and computational studies. Front Syst Neurosci 2014;8:150. [PMID: 25191233 DOI: 10.3389/fnsys.2014.00150] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 0.9] [Reference Citation Analysis]
13 Grieb B, Engler G, Sharott A, von Nicolai C, Streichert T, Papageorgiou I, Schulte A, Westphal M, Lamszus K, Engel AK, Moll CK, Hamel W. High-frequency stimulation of the subthalamic nucleus counteracts cortical expression of major histocompatibility complex genes in a rat model of Parkinson's disease. PLoS One 2014;9:e91663. [PMID: 24621597 DOI: 10.1371/journal.pone.0091663] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 0.6] [Reference Citation Analysis]