BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Borroto-Escuela DO, Perez De La Mora M, Manger P, Narváez M, Beggiato S, Crespo-Ramírez M, Navarro G, Wydra K, Díaz-Cabiale Z, Rivera A, Ferraro L, Tanganelli S, Filip M, Franco R, Fuxe K. Brain Dopamine Transmission in Health and Parkinson's Disease: Modulation of Synaptic Transmission and Plasticity Through Volume Transmission and Dopamine Heteroreceptors. Front Synaptic Neurosci 2018;10:20. [PMID: 30042672 DOI: 10.3389/fnsyn.2018.00020] [Cited by in Crossref: 21] [Cited by in F6Publishing: 26] [Article Influence: 5.3] [Reference Citation Analysis]
Number Citing Articles
1 Lycas MD, Ejdrup AL, Sørensen AT, Haahr NO, Jørgensen SH, Guthrie DA, Støier JF, Werner C, Newman AH, Sauer M, Herborg F, Gether U. Nanoscopic dopamine transporter distribution and conformation are inversely regulated by excitatory drive and D2 autoreceptor activity. Cell Rep 2022;40:111431. [PMID: 36170827 DOI: 10.1016/j.celrep.2022.111431] [Reference Citation Analysis]
2 Raitiere MN. The Elusive “Switch Process” in Bipolar Disorder and Photoperiodism: A Hypothesis Centering on NADPH Oxidase-Generated Reactive Oxygen Species Within the Bed Nucleus of the Stria Terminalis. Front Psychiatry 2022;13:847584. [DOI: 10.3389/fpsyt.2022.847584] [Reference Citation Analysis]
3 Brandon A, Cui X, Luan W, Ali AA, Pertile RAN, Alexander SA, Eyles DW. Prenatal hypoxia alters the early ontogeny of dopamine neurons. Transl Psychiatry 2022;12. [DOI: 10.1038/s41398-022-02005-w] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
4 Guidolin D, Tortorella C, Marcoli M, Maura G, Agnati LF. Intercellular Communication in the Central Nervous System as Deduced by Chemical Neuroanatomy and Quantitative Analysis of Images: Impact on Neuropharmacology. IJMS 2022;23:5805. [DOI: 10.3390/ijms23105805] [Reference Citation Analysis]
5 Romero-fernandez W, Wydra K, Borroto-escuela DO, Jastrzębska J, Zhou Z, Frankowska M, Filip M, Fuxe K. Increased density and antagonistic allosteric interactions in A2AR-D2R heterocomplexes in extinction from cocaine use, lost in cue induced reinstatement of cocaine seeking. Pharmacology Biochemistry and Behavior 2022. [DOI: 10.1016/j.pbb.2022.173375] [Reference Citation Analysis]
6 De-Miguel FF. The Thermodynamically Expensive Contribution of Three Calcium Sources to Somatic Release of Serotonin. Int J Mol Sci 2022;23:1495. [PMID: 35163419 DOI: 10.3390/ijms23031495] [Reference Citation Analysis]
7 Vahid-Ansari F, Albert PR. Rewiring of the Serotonin System in Major Depression. Front Psychiatry 2021;12:802581. [PMID: 34975594 DOI: 10.3389/fpsyt.2021.802581] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
8 Taylor HBC, Jeans AF. Friend or Foe? The Varied Faces of Homeostatic Synaptic Plasticity in Neurodegenerative Disease. Front Cell Neurosci 2021;15:782768. [PMID: 34955753 DOI: 10.3389/fncel.2021.782768] [Reference Citation Analysis]
9 Fonseca-Barriendos D, Frías-Soria CL, Pérez-Pérez D, Gómez-López R, Borroto Escuela DO, Rocha L. Drug-resistant epilepsy: Drug target hypothesis and beyond the receptors. Epilepsia Open 2021. [PMID: 34542940 DOI: 10.1002/epi4.12539] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
10 Trueta C. An analytical method to measure the contribution of clear synaptic and dense-core peri-synaptic vesicles to neurotransmitter release from synaptic terminals with two classes of secretory vesicles. MethodsX 2021;8:101374. [PMID: 34430270 DOI: 10.1016/j.mex.2021.101374] [Reference Citation Analysis]
11 Guo M, Xiang T, Li M, Sun Y, Sun S, Chen D, Jia Q, Li Y, Yao X, Wang X, Zhang X, He F, Wang M. Effects of intrastriatal injection of the dopamine receptor agonist SKF38393 and quinpirole on locomotor behavior in hemiparkinsonism rats. Behav Brain Res 2021;411:113339. [PMID: 33945831 DOI: 10.1016/j.bbr.2021.113339] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
12 Chen J, Cho KE, Skwarzynska D, Clancy S, Conley NJ, Clinton SM, Li X, Lin L, Zhu JJ. The Property-Based Practical Applications and Solutions of Genetically Encoded Acetylcholine and Monoamine Sensors. J Neurosci 2021;41:2318-28. [PMID: 33627325 DOI: 10.1523/JNEUROSCI.1062-19.2020] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Lin L, Gupta S, Zheng WS, Si K, Zhu JJ. Genetically encoded sensors enable micro- and nano-scopic decoding of transmission in healthy and diseased brains. Mol Psychiatry 2021;26:443-55. [PMID: 33277628 DOI: 10.1038/s41380-020-00960-8] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
14 Smits LM, Magni S, Kinugawa K, Grzyb K, Luginbühl J, Sabate-Soler S, Bolognin S, Shin JW, Mori E, Skupin A, Schwamborn JC. Single-cell transcriptomics reveals multiple neuronal cell types in human midbrain-specific organoids. Cell Tissue Res 2020;382:463-76. [PMID: 32737576 DOI: 10.1007/s00441-020-03249-y] [Cited by in Crossref: 8] [Cited by in F6Publishing: 13] [Article Influence: 4.0] [Reference Citation Analysis]
15 Hasbi A, Sivasubramanian M, Milenkovic M, Komarek K, Madras BK, George SR. Dopamine D1-D2 receptor heteromer expression in key brain regions of rat and higher species: Upregulation in rat striatum after cocaine administration. Neurobiol Dis 2020;143:105017. [PMID: 32679312 DOI: 10.1016/j.nbd.2020.105017] [Cited by in Crossref: 6] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
16 Smits LM, Schwamborn JC. Midbrain Organoids: A New Tool to Investigate Parkinson's Disease. Front Cell Dev Biol 2020;8:359. [PMID: 32509785 DOI: 10.3389/fcell.2020.00359] [Cited by in Crossref: 14] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
17 Zhu PK, Zheng WS, Zhang P, Jing M, Borden PM, Ali F, Guo K, Feng J, Marvin JS, Wang Y, Wan J, Gan L, Kwan AC, Lin L, Looger LL, Li Y, Zhang Y. Nanoscopic Visualization of Restricted Nonvolume Cholinergic and Monoaminergic Transmission with Genetically Encoded Sensors. Nano Lett 2020;20:4073-83. [PMID: 32396366 DOI: 10.1021/acs.nanolett.9b04877] [Cited by in Crossref: 2] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
18 Zhang ZH, Xu YW, Peng Y, Chen X, Li P, Zhou YG. Expression of a short antibody heavy chain peptide effectively antagonizes adenosine 2A receptor in vitro and in vivo. Expert Opin Ther Targets 2020;24:707-17. [PMID: 32308059 DOI: 10.1080/14728222.2020.1758667] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
19 Abd Aziz NAW, Iezhitsa I, Agarwal R, Abdul Kadir RF, Abd Latiff A, Ismail NM. Neuroprotection by trans-resveratrol against collagenase-induced neurological and neurobehavioural deficits in rats involves adenosine A1 receptors. Neurol Res 2020;42:189-208. [PMID: 32013788 DOI: 10.1080/01616412.2020.1716470] [Cited by in Crossref: 3] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
20 Ke T, Tsatsakis A, Santamaría A, Antunes Soare FA, Tinkov AA, Docea AO, Skalny A, Bowman AB, Aschner M. Chronic exposure to methylmercury induces puncta formation in cephalic dopaminergic neurons in Caenorhabditis elegans. Neurotoxicology 2020;77:105-13. [PMID: 31935438 DOI: 10.1016/j.neuro.2020.01.003] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
21 Borroto-Escuela DO, Wydra K, Romero-Fernandez W, Zhou Z, Frankowska M, Filip M, Fuxe K. A2AR Transmembrane 2 Peptide Administration Disrupts the A2AR-A2AR Homoreceptor but Not the A2AR-D2R Heteroreceptor Complex: Lack of Actions on Rodent Cocaine Self-Administration. Int J Mol Sci 2019;20:E6100. [PMID: 31816953 DOI: 10.3390/ijms20236100] [Cited by in Crossref: 3] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
22 Borroto-Escuela DO, Romero-Fernandez W, Wydra K, Zhou Z, Suder A, Filip M, Fuxe K. OSU-6162, a Sigma1R Ligand in Low Doses, Can Further Increase the Effects of Cocaine Self-Administration on Accumbal D2R Heteroreceptor Complexes. Neurotox Res 2020;37:433-44. [PMID: 31782100 DOI: 10.1007/s12640-019-00134-7] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
23 Souza MF, Medeiros KAAL, Lins LCRF, Bispo JMM, Gois AM, Freire MAM, Marchioro M, Santos JR. Intracerebroventricular injection of deltamethrin increases locomotion activity and causes spatial working memory and dopaminergic pathway impairment in rats. Brain Res Bull 2020;154:1-8. [PMID: 31606407 DOI: 10.1016/j.brainresbull.2019.10.002] [Cited by in Crossref: 2] [Cited by in F6Publishing: 8] [Article Influence: 0.7] [Reference Citation Analysis]
24 Perez de la Mora M, Hernandez-Mondragon C, Crespo-Ramirez M, Rejon-Orantes J, Borroto-Escuela DO, Fuxe K. Conventional and Novel Pharmacological Approaches to Treat Dopamine-Related Disorders: Focus on Parkinson's Disease and Schizophrenia. Neuroscience 2020;439:301-18. [PMID: 31349007 DOI: 10.1016/j.neuroscience.2019.07.026] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
25 Jellinger KA. Neuropathology and pathogenesis of extrapyramidal movement disorders: a critical update-I. Hypokinetic-rigid movement disorders. J Neural Transm (Vienna) 2019;126:933-95. [PMID: 31214855 DOI: 10.1007/s00702-019-02028-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 10] [Article Influence: 3.7] [Reference Citation Analysis]
26 Pelassa S, Guidolin D, Venturini A, Averna M, Frumento G, Campanini L, Bernardi R, Cortelli P, Buonaura GC, Maura G, Agnati LF, Cervetto C, Marcoli M. A2A-D2 Heteromers on Striatal Astrocytes: Biochemical and Biophysical Evidence. Int J Mol Sci 2019;20:E2457. [PMID: 31109007 DOI: 10.3390/ijms20102457] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
27 Matt SM, Gaskill PJ. Where Is Dopamine and how do Immune Cells See it?: Dopamine-Mediated Immune Cell Function in Health and Disease. J Neuroimmune Pharmacol 2020;15:114-64. [PMID: 31077015 DOI: 10.1007/s11481-019-09851-4] [Cited by in Crossref: 42] [Cited by in F6Publishing: 68] [Article Influence: 14.0] [Reference Citation Analysis]
28 [DOI: 10.1101/589598] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Reference Citation Analysis]