BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Stanojlovic M, Pallais JP, Kotz CM. Chemogenetic Modulation of Orexin Neurons Reverses Changes in Anxiety and Locomotor Activity in the A53T Mouse Model of Parkinson's Disease. Front Neurosci 2019;13:702. [PMID: 31417337 DOI: 10.3389/fnins.2019.00702] [Cited by in Crossref: 9] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Tran FH, Spears SL, Ahn KJ, Eisch AJ, Yun S. Does chronic systemic injection of the DREADD agonists clozapine-N-oxide or Compound 21 change behavior relevant to locomotion, exploration, anxiety, and depression in male non-DREADD-expressing mice? Neurosci Lett 2020;739:135432. [PMID: 33080350 DOI: 10.1016/j.neulet.2020.135432] [Cited by in Crossref: 3] [Cited by in F6Publishing: 1] [Article Influence: 1.5] [Reference Citation Analysis]
2 Mavanji V, Pomonis B, Kotz CM. Orexin, serotonin, and energy balance. WIREs Mech Dis 2022;14:e1536. [PMID: 35023323 DOI: 10.1002/wsbm.1536] [Reference Citation Analysis]
3 Gan J, Chen Z, Han J, Ma L, Liu S, Wang XD, Ji Y. Orexin-A in Patients With Lewy Body Disease: A Systematic Review and Meta-Analysis. Front Endocrinol (Lausanne) 2021;12:765701. [PMID: 34867809 DOI: 10.3389/fendo.2021.765701] [Reference Citation Analysis]
4 Tabikh M, Chahla C, Okdeh N, Kovacic H, Sabatier J, Fajloun Z. Parkinson disease: protective role and function of neuropeptides. Peptides 2021. [DOI: 10.1016/j.peptides.2021.170713] [Reference Citation Analysis]
5 Mobed A, Razavi S, Ahmadalipour A, Shakouri SK, Koohkan G. Biosensors in Parkinson's disease. Clin Chim Acta 2021;518:51-8. [PMID: 33753044 DOI: 10.1016/j.cca.2021.03.009] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
6 Liu C, Xue Y, Liu MF, Wang Y, Chen L. Orexin and Parkinson's disease: A protective neuropeptide with therapeutic potential. Neurochem Int 2020;138:104754. [PMID: 32422324 DOI: 10.1016/j.neuint.2020.104754] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
7 Stanojlovic M, Pallais JP, Kotz CM. Inhibition of Orexin/Hypocretin Neurons Ameliorates Elevated Physical Activity and Energy Expenditure in the A53T Mouse Model of Parkinson's Disease. Int J Mol Sci 2021;22:E795. [PMID: 33466831 DOI: 10.3390/ijms22020795] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Idova GV, Al'perina EL, Gevorgyan MM, Tikhonova MA, Zhanaeva SY. Content of Peripheral Blood T- and B-Cell Subpopulations in Transgenic A53T Mice of Different Age (A Model of Parkinson's Disease). Bull Exp Biol Med 2021;170:401-4. [PMID: 33725243 DOI: 10.1007/s10517-021-05075-w] [Reference Citation Analysis]
9 Yazawa A, Hensley K, Ohshima T. Effects of Lanthionine Ketimine-5-Ethyl Ester on the α-Synucleinopathy Mouse Model. Neurochem Res 2022. [PMID: 35589915 DOI: 10.1007/s11064-022-03626-9] [Reference Citation Analysis]
10 Torres ERS, Stanojlovic M, Zelikowsky M, Bonsberger J, Hean S, Mulligan C, Baldauf L, Fleming S, Masliah E, Chesselet MF, Fanselow MS, Richter F. Alpha-synuclein pathology, microgliosis, and parvalbumin neuron loss in the amygdala associated with enhanced fear in the Thy1-aSyn model of Parkinson's disease. Neurobiol Dis 2021;158:105478. [PMID: 34390837 DOI: 10.1016/j.nbd.2021.105478] [Reference Citation Analysis]