BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Schmitt K, Grimm A, Eckert A. Amyloid-β-Induced Changes in Molecular Clock Properties and Cellular Bioenergetics. Front Neurosci 2017;11:124. [PMID: 28367108 DOI: 10.3389/fnins.2017.00124] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 3.0] [Reference Citation Analysis]
Number Citing Articles
1 Furtado A, Astaburuaga R, Costa A, Duarte AC, Gonçalves I, Cipolla-Neto J, Lemos MC, Carro E, Relógio A, Santos CRA, Quintela T. The Rhythmicity of Clock Genes is Disrupted in the Choroid Plexus of the APP/PS1 Mouse Model of Alzheimer's Disease. J Alzheimers Dis 2020;77:795-806. [PMID: 32741824 DOI: 10.3233/JAD-200331] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 5.0] [Reference Citation Analysis]
2 Wu H, Liu Y, Liu L, Meng Q, Du C, Li K, Dong S, Zhang Y, Li H, Zhang H. Decreased expression of the clock gene Bmal1 is involved in the pathogenesis of temporal lobe epilepsy. Mol Brain 2021;14:113. [PMID: 34261484 DOI: 10.1186/s13041-021-00824-4] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
3 Yoo ID, Park MW, Cha HW, Yoon S, Boonpraman N, Yi SS, Moon JS. Elevated CLOCK and BMAL1 Contribute to the Impairment of Aerobic Glycolysis from Astrocytes in Alzheimer's Disease. Int J Mol Sci 2020;21:E7862. [PMID: 33114015 DOI: 10.3390/ijms21217862] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 7.5] [Reference Citation Analysis]
4 Witzig M, Grimm A, Schmitt K, Lejri I, Frank S, Brown SA, Eckert A. Clock-Controlled Mitochondrial Dynamics Correlates with Cyclic Pregnenolone Synthesis. Cells 2020;9:E2323. [PMID: 33086741 DOI: 10.3390/cells9102323] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
5 Agapouda A, Butterweck V, Hamburger M, de Beer D, Joubert E, Eckert A. Honeybush Extracts (Cyclopia spp.) Rescue Mitochondrial Functions and Bioenergetics against Oxidative Injury. Oxid Med Cell Longev 2020;2020:1948602. [PMID: 32831989 DOI: 10.1155/2020/1948602] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
6 Roh HW, Choi JG, Kim NR, Choe YS, Choi JW, Cho SM, Seo SW, Park B, Hong CH, Yoon D, Son SJ, Kim EY. Associations of rest-activity patterns with amyloid burden, medial temporal lobe atrophy, and cognitive impairment. EBioMedicine 2020;58:102881. [PMID: 32736306 DOI: 10.1016/j.ebiom.2020.102881] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
7 Lee J, Kim DE, Griffin P, Sheehan PW, Kim DH, Musiek ES, Yoon SY. Inhibition of REV-ERBs stimulates microglial amyloid-beta clearance and reduces amyloid plaque deposition in the 5XFAD mouse model of Alzheimer's disease. Aging Cell 2020;19:e13078. [PMID: 31800167 DOI: 10.1111/acel.13078] [Cited by in Crossref: 38] [Cited by in F6Publishing: 47] [Article Influence: 19.0] [Reference Citation Analysis]
8 Pacheco-Bernal I, Becerril-Pérez F, Aguilar-Arnal L. Circadian rhythms in the three-dimensional genome: implications of chromatin interactions for cyclic transcription. Clin Epigenetics 2019;11:79. [PMID: 31092281 DOI: 10.1186/s13148-019-0677-2] [Cited by in Crossref: 28] [Cited by in F6Publishing: 31] [Article Influence: 9.3] [Reference Citation Analysis]
9 Duncan MJ. Interacting influences of aging and Alzheimer's disease on circadian rhythms. Eur J Neurosci 2020;51:310-25. [DOI: 10.1111/ejn.14358] [Cited by in Crossref: 21] [Cited by in F6Publishing: 23] [Article Influence: 7.0] [Reference Citation Analysis]
10 Leng Y, Musiek ES, Hu K, Cappuccio FP, Yaffe K. Association between circadian rhythms and neurodegenerative diseases. Lancet Neurol 2019;18:307-18. [PMID: 30784558 DOI: 10.1016/S1474-4422(18)30461-7] [Cited by in Crossref: 222] [Cited by in F6Publishing: 177] [Article Influence: 74.0] [Reference Citation Analysis]
11 Loehfelm A, Boucsein A, Pretz D, Tups A. Timing Matters: Circadian Effects on Energy Homeostasis and Alzheimer's Disease. Trends Endocrinol Metab 2019;30:132-43. [PMID: 30594436 DOI: 10.1016/j.tem.2018.12.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 7] [Article Influence: 2.3] [Reference Citation Analysis]
12 Petrasek T, Vojtechova I, Lobellova V, Popelikova A, Janikova M, Brozka H, Houdek P, Sladek M, Sumova A, Kristofikova Z, Vales K, Stuchlík A. The McGill Transgenic Rat Model of Alzheimer's Disease Displays Cognitive and Motor Impairments, Changes in Anxiety and Social Behavior, and Altered Circadian Activity. Front Aging Neurosci 2018;10:250. [PMID: 30210330 DOI: 10.3389/fnagi.2018.00250] [Cited by in Crossref: 24] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
13 Homolak J, Mudrovčić M, Vukić B, Toljan K. Circadian Rhythm and Alzheimer's Disease. Med Sci (Basel) 2018;6:E52. [PMID: 29933646 DOI: 10.3390/medsci6030052] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
14 Milán-tomás Á, Shapiro CM. Circadian Rhythms Disturbances in Alzheimer Disease: Current Concepts, Diagnosis, and Management. Alzheimer Disease & Associated Disorders 2018;32:162-71. [DOI: 10.1097/wad.0000000000000243] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 2.3] [Reference Citation Analysis]
15 Ottinger MA. A Comparative Approach to Metabolic Aspects of Aging: Conserved Mechanisms and Effects of Calorie Restriction and Environment. Prog Mol Biol Transl Sci 2018;155:109-27. [PMID: 29653678 DOI: 10.1016/bs.pmbts.2017.11.004] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]