BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Carr JA. I'll take the low road: the evolutionary underpinnings of visually triggered fear. Front Neurosci 2015;9:414. [PMID: 26578871 DOI: 10.3389/fnins.2015.00414] [Cited by in Crossref: 63] [Cited by in F6Publishing: 26] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 [DOI: 10.1101/770743] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
2 Alia-klein N, Gan G, Gilam G, Bezek J, Bruno A, Denson TF, Hendler T, Lowe L, Mariotti V, Muscatello MR, Palumbo S, Pellegrini S, Pietrini P, Rizzo A, Verona E. The feeling of anger: From brain networks to linguistic expressions. Neuroscience & Biobehavioral Reviews 2020;108:480-97. [DOI: 10.1016/j.neubiorev.2019.12.002] [Cited by in Crossref: 11] [Cited by in F6Publishing: 8] [Article Influence: 5.5] [Reference Citation Analysis]
3 McFadyen J, Mermillod M, Mattingley JB, Halász V, Garrido MI. A Rapid Subcortical Amygdala Route for Faces Irrespective of Spatial Frequency and Emotion. J Neurosci 2017;37:3864-74. [PMID: 28283563 DOI: 10.1523/JNEUROSCI.3525-16.2017] [Cited by in Crossref: 45] [Cited by in F6Publishing: 27] [Article Influence: 9.0] [Reference Citation Analysis]
4 Benedict T, Gast A. Evaluative conditioning with fear- and disgust-evoking stimuli: no evidence that they increase learning without explicit memory. Cognition and Emotion 2020;34:42-56. [DOI: 10.1080/02699931.2019.1646213] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
5 Song C, Liu BP, Zhang YP, Peng Z, Wang J, Collier AD, Echevarria DJ, Savelieva KV, Lawrence RF, Rex CS, Meshalkina DA, Kalueff AV. Modeling consequences of prolonged strong unpredictable stress in zebrafish: Complex effects on behavior and physiology. Prog Neuropsychopharmacol Biol Psychiatry 2018;81:384-94. [PMID: 28847526 DOI: 10.1016/j.pnpbp.2017.08.021] [Cited by in Crossref: 42] [Cited by in F6Publishing: 40] [Article Influence: 8.4] [Reference Citation Analysis]
6 Ghai S, Ghai I, Effenberg AO. "Low road" to rehabilitation: a perspective on subliminal sensory neuroprosthetics. Neuropsychiatr Dis Treat 2018;14:301-7. [PMID: 29398914 DOI: 10.2147/NDT.S153392] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 1.8] [Reference Citation Analysis]
7 Sonkusare S, Nguyen VT, Moran R, van der Meer J, Ren Y, Koussis N, Dionisio S, Breakspear M, Guo C. Intracranial-EEG evidence for medial temporal pole driving amygdala activity induced by multi-modal emotional stimuli. Cortex 2020;130:32-48. [PMID: 32640373 DOI: 10.1016/j.cortex.2020.05.018] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
8 Tao D, He Z, Lin Y, Liu C, Tao Q. Where does fear originate in the brain? A coordinate-based meta-analysis of explicit and implicit fear processing. Neuroimage 2021;227:117686. [PMID: 33359340 DOI: 10.1016/j.neuroimage.2020.117686] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
9 McFadyen J, Dolan RJ, Garrido MI. The influence of subcortical shortcuts on disordered sensory and cognitive processing. Nat Rev Neurosci 2020;21:264-76. [PMID: 32269315 DOI: 10.1038/s41583-020-0287-1] [Cited by in Crossref: 13] [Cited by in F6Publishing: 11] [Article Influence: 6.5] [Reference Citation Analysis]
10 Sharma S, Pandey S. Treatment of essential tremor: current status. Postgrad Med J 2020;96:84-93. [DOI: 10.1136/postgradmedj-2019-136647] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
11 Montardy Q, Kwan WC, Mundinano IC, Fox DM, Wang L, Gross CT, Bourne JA. Mapping the neural circuitry of predator fear in the nonhuman primate. Brain Struct Funct 2021;226:195-205. [PMID: 33263778 DOI: 10.1007/s00429-020-02176-6] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
12 Neri D, Ruberto T, Cord-Cruz G, Porfiri M. Information theory and robotics meet to study predator-prey interactions. Chaos 2017;27:073111. [PMID: 28764408 DOI: 10.1063/1.4990051] [Cited by in Crossref: 14] [Cited by in F6Publishing: 9] [Article Influence: 3.5] [Reference Citation Analysis]
13 Dampney R. Emotion and the Cardiovascular System: Postulated Role of Inputs From the Medial Prefrontal Cortex to the Dorsolateral Periaqueductal Gray. Front Neurosci 2018;12:343. [PMID: 29881334 DOI: 10.3389/fnins.2018.00343] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
14 Zhou NA, Maire PS, Masterson SP, Bickford ME. The mouse pulvinar nucleus: Organization of the tectorecipient zones. Vis Neurosci 2017;34:E011. [PMID: 28965504 DOI: 10.1017/S0952523817000050] [Cited by in Crossref: 50] [Cited by in F6Publishing: 28] [Article Influence: 12.5] [Reference Citation Analysis]
15 Medeiros KAAL, Almeida-Souza TH, Silva RS, Santos HF, Santos EV, Gois AM, Leal PC, Santos JR. Involvement of nitric oxide in the neurobiology of fear-like behavior. Nitric Oxide 2022:S1089-8603(22)00047-7. [PMID: 35533947 DOI: 10.1016/j.niox.2022.04.003] [Reference Citation Analysis]
16 Zacarias R, Namiki S, Card GM, Vasconcelos ML, Moita MA. Speed dependent descending control of freezing behavior in Drosophila melanogaster. Nat Commun 2018;9:3697. [PMID: 30209268 DOI: 10.1038/s41467-018-05875-1] [Cited by in Crossref: 27] [Cited by in F6Publishing: 20] [Article Influence: 6.8] [Reference Citation Analysis]
17 Deichler A, Carrasco D, Gonzalez-cabrera C, Letelier JC, Marín G, Mpodozis J. The nucleus pretectalis principalis: A pretectal structure hidden in the mammalian thalamus. J Comp Neurol 2019;527:372-91. [DOI: 10.1002/cne.24540] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
18 Biswas R, Shlizerman E. Statistical Perspective on Functional and Causal Neural Connectomics: A Comparative Study. Front Syst Neurosci 2022;16:817962. [DOI: 10.3389/fnsys.2022.817962] [Reference Citation Analysis]
19 Bina R, Matalon D, Fregeau B, Tarsitano JJ, Aukrust I, Houge G, Bend R, Warren H, Stevenson RE, Stuurman KE, Barkovich AJ, Sherr EH. De novo variants in SUPT16H cause neurodevelopmental disorders associated with corpus callosum abnormalities. J Med Genet 2020;57:461-5. [PMID: 31924697 DOI: 10.1136/jmedgenet-2019-106193] [Reference Citation Analysis]
20 Le QV, Le QV, Nishimaru H, Matsumoto J, Takamura Y, Hori E, Maior RS, Tomaz C, Ono T, Nishijo H. A Prototypical Template for Rapid Face Detection Is Embedded in the Monkey Superior Colliculus. Front Syst Neurosci 2020;14:5. [PMID: 32158382 DOI: 10.3389/fnsys.2020.00005] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 1.5] [Reference Citation Analysis]
21 Silston B, Mobbs D. Detecting and Responding to Threats in the Natural World. Psychological Inquiry 2018;29:28-31. [DOI: 10.1080/1047840x.2018.1435708] [Reference Citation Analysis]
22 Gall AJ, Goodwin AM, Khacherian OS, Teal LB. Superior Colliculus Lesions Lead to Disrupted Responses to Light in Diurnal Grass Rats (Arvicanthis niloticus). J Biol Rhythms 2020;35:45-57. [PMID: 31619104 DOI: 10.1177/0748730419881920] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
23 Denver RJ. Stress hormones mediate developmental plasticity in vertebrates with complex life cycles. Neurobiol Stress 2021;14:100301. [PMID: 33614863 DOI: 10.1016/j.ynstr.2021.100301] [Reference Citation Analysis]
24 do Carmo Silva RX, Lima-maximino MG, Maximino C. The aversive brain system of teleosts: Implications for neuroscience and biological psychiatry. Neuroscience & Biobehavioral Reviews 2018;95:123-35. [DOI: 10.1016/j.neubiorev.2018.10.001] [Cited by in Crossref: 10] [Cited by in F6Publishing: 4] [Article Influence: 2.5] [Reference Citation Analysis]
25 Heap LAL, Vanwalleghem G, Thompson AW, Favre-Bulle IA, Scott EK. Luminance Changes Drive Directional Startle through a Thalamic Pathway. Neuron 2018;99:293-301.e4. [PMID: 29983325 DOI: 10.1016/j.neuron.2018.06.013] [Cited by in Crossref: 34] [Cited by in F6Publishing: 20] [Article Influence: 8.5] [Reference Citation Analysis]
26 Prater CM, Harris BN, Carr JA. Tectal CRFR1 receptor involvement in avoidance and approach behaviors in the South African clawed frog, Xenopus laevis. Horm Behav 2020;120:104707. [PMID: 32001211 DOI: 10.1016/j.yhbeh.2020.104707] [Reference Citation Analysis]
27 Prater CM, Harris BN, Carr JA. Tectal CRFR1 receptors modulate food intake and feeding behavior in the South African clawed frog Xenopus laevis. Horm Behav 2018;105:86-94. [PMID: 30077740 DOI: 10.1016/j.yhbeh.2018.07.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 5] [Article Influence: 1.5] [Reference Citation Analysis]
28 Prater CM, Garcia C, McGuire LP, Carr JA. Tectal corticotropin-releasing factor (CRF) neurons respond to fasting and a reactive stressor in the African Clawed Frog, Xenopus laevis. Gen Comp Endocrinol 2018;258:91-8. [PMID: 28774755 DOI: 10.1016/j.ygcen.2017.07.029] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.0] [Reference Citation Analysis]
29 Terpou BA, Harricharan S, McKinnon MC, Frewen P, Jetly R, Lanius RA. The effects of trauma on brain and body: A unifying role for the midbrain periaqueductal gray. J Neurosci Res 2019;97:1110-40. [PMID: 31254294 DOI: 10.1002/jnr.24447] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]