BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Anderson RI, Becker HC, Adams BL, Jesudason CD, Rorick-Kehn LM. Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models. Front Neurosci 2014;8:33. [PMID: 24616657 DOI: 10.3389/fnins.2014.00033] [Cited by in Crossref: 48] [Cited by in F6Publishing: 53] [Article Influence: 6.0] [Reference Citation Analysis]
Number Citing Articles
1 Barson JR, Leibowitz SF. Hypothalamic neuropeptide signaling in alcohol addiction. Prog Neuropsychopharmacol Biol Psychiatry 2016;65:321-9. [PMID: 25689818 DOI: 10.1016/j.pnpbp.2015.02.006] [Cited by in Crossref: 38] [Cited by in F6Publishing: 33] [Article Influence: 5.4] [Reference Citation Analysis]
2 Becker HC, Lopez MF. An Animal Model of Alcohol Dependence to Screen Medications for Treating Alcoholism. Int Rev Neurobiol 2016;126:157-77. [PMID: 27055614 DOI: 10.1016/bs.irn.2016.02.006] [Cited by in Crossref: 12] [Cited by in F6Publishing: 9] [Article Influence: 2.0] [Reference Citation Analysis]
3 Alcaraz-Iborra M, Navarrete F, Rodríguez-Ortega E, de la Fuente L, Manzanares J, Cubero I. Different Molecular/Behavioral Endophenotypes in C57BL/6J Mice Predict the Impact of OX1 Receptor Blockade on Binge-Like Ethanol Intake. Front Behav Neurosci 2017;11:186. [PMID: 29066961 DOI: 10.3389/fnbeh.2017.00186] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 2.4] [Reference Citation Analysis]
4 Kastman HE, Blasiak A, Walker L, Siwiec M, Krstew EV, Gundlach AL, Lawrence AJ. Nucleus incertus Orexin2 receptors mediate alcohol seeking in rats. Neuropharmacology 2016;110:82-91. [PMID: 27395787 DOI: 10.1016/j.neuropharm.2016.07.006] [Cited by in Crossref: 28] [Cited by in F6Publishing: 28] [Article Influence: 4.7] [Reference Citation Analysis]
5 Prince CD, Rau AR, Yorgason JT, España RA. Hypocretin/Orexin regulation of dopamine signaling and cocaine self-administration is mediated predominantly by hypocretin receptor 1. ACS Chem Neurosci 2015;6:138-46. [PMID: 25496218 DOI: 10.1021/cn500246j] [Cited by in Crossref: 58] [Cited by in F6Publishing: 49] [Article Influence: 8.3] [Reference Citation Analysis]
6 Asakura S, Shiotani M, Gauvin DV, Fujiwara A, Ueno T, Bower N, Beuckmann CT, Moline M. Nonclinical evaluation of abuse liability of the dual orexin receptor antagonist lemborexant. Regul Toxicol Pharmacol 2021;127:105053. [PMID: 34619288 DOI: 10.1016/j.yrtph.2021.105053] [Reference Citation Analysis]
7 Fernø J, Señarís R, Diéguez C, Tena-Sempere M, López M. Orexins (hypocretins) and energy balance: More than feeding. Mol Cell Endocrinol 2015;418 Pt 1:17-26. [PMID: 26213323 DOI: 10.1016/j.mce.2015.07.022] [Cited by in Crossref: 21] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
8 Khoo SY, McNally GP, Clemens KJ. The dual orexin receptor antagonist TCS1102 does not affect reinstatement of nicotine-seeking. PLoS One 2017;12:e0173967. [PMID: 28296947 DOI: 10.1371/journal.pone.0173967] [Cited by in Crossref: 10] [Cited by in F6Publishing: 7] [Article Influence: 2.0] [Reference Citation Analysis]
9 Jacobson LH, Chen S, Mir S, Hoyer D. Orexin OX2 Receptor Antagonists as Sleep Aids. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 105-36. [DOI: 10.1007/7854_2016_47] [Cited by in Crossref: 17] [Cited by in F6Publishing: 15] [Article Influence: 2.8] [Reference Citation Analysis]
10 Lopez MF, Moorman DE, Aston-Jones G, Becker HC. The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice. Brain Res 2016;1636:74-80. [PMID: 26851547 DOI: 10.1016/j.brainres.2016.01.049] [Cited by in Crossref: 42] [Cited by in F6Publishing: 35] [Article Influence: 7.0] [Reference Citation Analysis]
11 Campbell EJ, Marchant NJ, Lawrence AJ. A sleeping giant: Suvorexant for the treatment of alcohol use disorder? Brain Res 2020;1731:145902. [PMID: 30081035 DOI: 10.1016/j.brainres.2018.08.005] [Cited by in Crossref: 17] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
12 Sanchez-Alavez M, Benedict J, Wills DN, Ehlers CL. Effect of suvorexant on event-related oscillations and EEG sleep in rats exposed to chronic intermittent ethanol vapor and protracted withdrawal. Sleep 2019;42:zsz020. [PMID: 30715515 DOI: 10.1093/sleep/zsz020] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 4.5] [Reference Citation Analysis]
13 Cannella N, Ubaldi M, Masi A, Bramucci M, Roberto M, Bifone A, Ciccocioppo R. Building better strategies to develop new medications in Alcohol Use Disorder: Learning from past success and failure to shape a brighter future. Neurosci Biobehav Rev 2019;103:384-98. [PMID: 31112713 DOI: 10.1016/j.neubiorev.2019.05.014] [Cited by in Crossref: 7] [Cited by in F6Publishing: 4] [Article Influence: 2.3] [Reference Citation Analysis]
14 Yang M, Ma H, Jia M, Li Y, Miao D, Cui C, Wu L. The role of the nucleus accumbens OXR1 in cocaine-induced locomotor sensitization. Behav Brain Res 2020;379:112365. [PMID: 31743729 DOI: 10.1016/j.bbr.2019.112365] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
15 Hoyer D, Allen A, Jacobson LH. Hypnotics with novel modes of action. Br J Clin Pharmacol 2020;86:244-9. [PMID: 31756268 DOI: 10.1111/bcp.14180] [Cited by in Crossref: 11] [Cited by in F6Publishing: 7] [Article Influence: 5.5] [Reference Citation Analysis]
16 Radke AK, Sneddon EA, Frasier RM, Hopf FW. Recent Perspectives on Sex Differences in Compulsion-Like and Binge Alcohol Drinking. Int J Mol Sci 2021;22:3788. [PMID: 33917517 DOI: 10.3390/ijms22073788] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
17 Hühne A, Echtler L, Kling C, Stephan M, Schmidt MV, Rossner MJ, Landgraf D. Circadian gene × environment perturbations influence alcohol drinking in Cryptochrome-deficient mice. Addict Biol 2022;27:e13105. [PMID: 34672045 DOI: 10.1111/adb.13105] [Reference Citation Analysis]
18 Campbell EJ, Norman A, Bonomo Y, Lawrence AJ. Suvorexant to treat alcohol use disorder and comorbid insomnia: Plan for a phase II trial. Brain Res 2020;1728:146597. [PMID: 31837287 DOI: 10.1016/j.brainres.2019.146597] [Cited by in Crossref: 7] [Cited by in F6Publishing: 5] [Article Influence: 2.3] [Reference Citation Analysis]
19 Barson JR, Leibowitz SF. Orexin/Hypocretin System: Role in Food and Drug Overconsumption. Int Rev Neurobiol 2017;136:199-237. [PMID: 29056152 DOI: 10.1016/bs.irn.2017.06.006] [Cited by in Crossref: 20] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
20 Schmeichel BE, Matzeu A, Koebel P, Vendruscolo LF, Sidhu H, Shahryari R, Kieffer BL, Koob GF, Martin-Fardon R, Contet C. Knockdown of hypocretin attenuates extended access of cocaine self-administration in rats. Neuropsychopharmacology 2018;43:2373-82. [PMID: 29703996 DOI: 10.1038/s41386-018-0054-4] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 6.5] [Reference Citation Analysis]
21 James MH, Bowrey HE, Stopper CM, Aston-Jones G. Demand elasticity predicts addiction endophenotypes and the therapeutic efficacy of an orexin/hypocretin-1 receptor antagonist in rats. Eur J Neurosci 2019;50:2602-12. [PMID: 30240516 DOI: 10.1111/ejn.14166] [Cited by in Crossref: 22] [Cited by in F6Publishing: 27] [Article Influence: 5.5] [Reference Citation Analysis]
22 Wang C, Wang Q, Ji B, Pan Y, Xu C, Cheng B, Bai B, Chen J. The Orexin/Receptor System: Molecular Mechanism and Therapeutic Potential for Neurological Diseases. Front Mol Neurosci 2018;11:220. [PMID: 30002617 DOI: 10.3389/fnmol.2018.00220] [Cited by in Crossref: 55] [Cited by in F6Publishing: 53] [Article Influence: 13.8] [Reference Citation Analysis]
23 Matzeu A, Martin-Fardon R. Targeting the orexin system for prescription opioid use disorder: Orexin-1 receptor blockade prevents oxycodone taking and seeking in rats. Neuropharmacology 2020;164:107906. [PMID: 31841797 DOI: 10.1016/j.neuropharm.2019.107906] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
24 Lei K, Kwok C, Darevsky D, Wegner SA, Yu J, Nakayama L, Pedrozo V, Anderson L, Ghotra S, Fouad M, Hopf FW. Nucleus Accumbens Shell Orexin-1 Receptors Are Critical Mediators of Binge Intake in Excessive-Drinking Individuals. Front Neurosci 2019;13:88. [PMID: 30814925 DOI: 10.3389/fnins.2019.00088] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
25 Moorman DE. The hypocretin/orexin system as a target for excessive motivation in alcohol use disorders. Psychopharmacology (Berl) 2018;235:1663-80. [PMID: 29508004 DOI: 10.1007/s00213-018-4871-2] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
26 Khoo SY, Brown RM. Orexin/hypocretin based pharmacotherapies for the treatment of addiction: DORA or SORA? CNS Drugs 2014;28:713-30. [PMID: 24942635 DOI: 10.1007/s40263-014-0179-x] [Cited by in Crossref: 42] [Cited by in F6Publishing: 37] [Article Influence: 6.0] [Reference Citation Analysis]
27 McGinn MA, Pantazis CB, Tunstall BJ, Marchette RCN, Carlson ER, Said N, Koob GF, Vendruscolo LF. Drug addiction co-morbidity with alcohol: Neurobiological insights. Int Rev Neurobiol 2021;157:409-72. [PMID: 33648675 DOI: 10.1016/bs.irn.2020.11.002] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
28 Anderson RI, Lopez MF, Griffin WC, Haun HL, Bloodgood DW, Pati D, Boyt KM, Kash TL, Becker HC. Dynorphin-kappa opioid receptor activity in the central amygdala modulates binge-like alcohol drinking in mice. Neuropsychopharmacology 2019;44:1084-92. [PMID: 30555162 DOI: 10.1038/s41386-018-0294-3] [Cited by in Crossref: 37] [Cited by in F6Publishing: 28] [Article Influence: 9.3] [Reference Citation Analysis]
29 Hopf FW. Recent perspectives on orexin/hypocretin promotion of addiction-related behaviors. Neuropharmacology 2020;168:108013. [PMID: 32092435 DOI: 10.1016/j.neuropharm.2020.108013] [Cited by in Crossref: 19] [Cited by in F6Publishing: 18] [Article Influence: 9.5] [Reference Citation Analysis]
30 Moorman DE, James MH, Kilroy EA, Aston-Jones G. Orexin/hypocretin neuron activation is correlated with alcohol seeking and preference in a topographically specific manner. Eur J Neurosci 2016;43:710-20. [PMID: 26750264 DOI: 10.1111/ejn.13170] [Cited by in Crossref: 44] [Cited by in F6Publishing: 37] [Article Influence: 7.3] [Reference Citation Analysis]
31 Buck SA, Torregrossa MM, Logan RW, Freyberg Z. Roles of dopamine and glutamate co-release in the nucleus accumbens in mediating the actions of drugs of abuse. FEBS J 2021;288:1462-74. [PMID: 32702182 DOI: 10.1111/febs.15496] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
32 Hogarth SJ, Jaehne EJ, van den Buuse M, Djouma E. Brain-derived neurotrophic factor (BDNF) determines a sex difference in cue-conditioned alcohol seeking in rats. Behavioural Brain Research 2018;339:73-8. [DOI: 10.1016/j.bbr.2017.11.019] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.5] [Reference Citation Analysis]
33 Kwok C, Lei K, Pedrozo V, Anderson L, Ghotra S, Walsh M, Li L, Yu J, Hopf FW. Differential importance of nucleus accumbens Ox1Rs and AMPARs for female and male mouse binge alcohol drinking. Sci Rep 2021;11:231. [PMID: 33420199 DOI: 10.1038/s41598-020-79935-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
34 Ehlers CL, Benedict J, Wills D, Sanchez-Alavez M. PSPH-D-18-00526: Effect of a dual orexin receptor antagonist (DORA-12) on sleep and event-related oscillations in rats exposed to ethanol vapor during adolescence. Psychopharmacology (Berl) 2020;237:2917-27. [PMID: 31659377 DOI: 10.1007/s00213-019-05371-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
35 Matzeu A, Martin-fardon R. Understanding the Role of Orexin Neuropeptides in Drug Addiction: Preclinical Studies and Translational Value. Front Behav Neurosci 2022;15:787595. [DOI: 10.3389/fnbeh.2021.787595] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
36 Lei K, Wegner SA, Yu JH, Mototake A, Hu B, Hopf FW. Nucleus Accumbens Shell and mPFC but Not Insula Orexin-1 Receptors Promote Excessive Alcohol Drinking. Front Neurosci 2016;10:400. [PMID: 27625592 DOI: 10.3389/fnins.2016.00400] [Cited by in Crossref: 22] [Cited by in F6Publishing: 25] [Article Influence: 3.7] [Reference Citation Analysis]
37 Baldo BA. Prefrontal Cortical Opioids and Dysregulated Motivation: A Network Hypothesis. Trends Neurosci 2016;39:366-77. [PMID: 27233653 DOI: 10.1016/j.tins.2016.03.004] [Cited by in Crossref: 30] [Cited by in F6Publishing: 25] [Article Influence: 6.0] [Reference Citation Analysis]
38 Gorka SM, Khorrami KJ, Manzler CA, Phan KL. Acute orexin antagonism selectively modulates anticipatory anxiety in humans: implications for addiction and anxiety. Transl Psychiatry 2022;12:308. [PMID: 35918313 DOI: 10.1038/s41398-022-02090-x] [Reference Citation Analysis]
39 Lei K, Wegner SA, Yu JH, Hopf FW. Orexin-1 receptor blockade suppresses compulsive-like alcohol drinking in mice. Neuropharmacology 2016;110:431-7. [PMID: 27523303 DOI: 10.1016/j.neuropharm.2016.08.008] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
40 Olney JJ, Navarro M, Thiele TE. The Role of Orexin Signaling in the Ventral Tegmental Area and Central Amygdala in Modulating Binge-Like Ethanol Drinking Behavior. Alcohol Clin Exp Res 2017;41:551-61. [PMID: 28097729 DOI: 10.1111/acer.13336] [Cited by in Crossref: 25] [Cited by in F6Publishing: 21] [Article Influence: 5.0] [Reference Citation Analysis]
41 Thompson JB, Conrad SE, Peterman JL, Papini MR. Reinforcing properties of alcohol in rats: Progressive ratio licking performance reinforced with 66% alcohol. Physiol Behav 2021;235:113393. [PMID: 33757779 DOI: 10.1016/j.physbeh.2021.113393] [Reference Citation Analysis]
42 Olney JJ, Navarro M, Thiele TE. Binge-like consumption of ethanol and other salient reinforcers is blocked by orexin-1 receptor inhibition and leads to a reduction of hypothalamic orexin immunoreactivity. Alcohol Clin Exp Res 2015;39:21-9. [PMID: 25623402 DOI: 10.1111/acer.12591] [Cited by in Crossref: 37] [Cited by in F6Publishing: 30] [Article Influence: 6.2] [Reference Citation Analysis]
43 Lei K, Kwok C, Hopf FW. Nucleus accumbens shell Orexin-1 receptors are not needed for single-bottle limited daily access alcohol intake in C57BL/6 mice. Alcohol 2020;89:139-46. [PMID: 32987129 DOI: 10.1016/j.alcohol.2020.09.003] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
44 Moorman DE, James MH, Kilroy EA, Aston-Jones G. Orexin/hypocretin-1 receptor antagonism reduces ethanol self-administration and reinstatement selectively in highly-motivated rats. Brain Res 2017;1654:34-42. [PMID: 27771284 DOI: 10.1016/j.brainres.2016.10.018] [Cited by in Crossref: 51] [Cited by in F6Publishing: 48] [Article Influence: 8.5] [Reference Citation Analysis]
45 Kim JS, Martin-Fardon R. Possible Role of CRF-Hcrt Interaction in the Infralimbic Cortex in the Emergence and Maintenance of Compulsive Alcohol-Seeking Behavior. Alcohol Clin Exp Res 2020;44:354-67. [PMID: 31840823 DOI: 10.1111/acer.14264] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
46 Steiner MA, Winrow CJ. Opportunities and perspectives for developing orexin receptor antagonists. Front Neurosci 2014;8:158. [PMID: 24971050 DOI: 10.3389/fnins.2014.00158] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.4] [Reference Citation Analysis]
47 Seigneur E, de Lecea L. Hypocretin (Orexin) Replacement Therapies. Medicine in Drug Discovery 2020;8:100070. [DOI: 10.1016/j.medidd.2020.100070] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
48 Brown JA, Woodworth HL, Leinninger GM. To ingest or rest? Specialized roles of lateral hypothalamic area neurons in coordinating energy balance. Front Syst Neurosci 2015;9:9. [PMID: 25741247 DOI: 10.3389/fnsys.2015.00009] [Cited by in Crossref: 47] [Cited by in F6Publishing: 51] [Article Influence: 6.7] [Reference Citation Analysis]
49 Hao H, Luan X, Guo F, Sun X, Gong Y, Xu L. Lateral hypothalamic area orexin-A influence the firing activity of gastric distension-sensitive neurons and gastric motility in rats. Neuropeptides 2016;57:45-52. [PMID: 26919916 DOI: 10.1016/j.npep.2016.02.005] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 0.8] [Reference Citation Analysis]
50 Czora-poczwardowska K, Kujawski R, Słyńko-krzyżostaniak J, Mikołajczak PŁ, Szulc M. Orexin receptor blockers: A tool for lowering alcohol intake and alcohol addictive behavior in the light of preclinical studies. Postępy Higieny i Medycyny Doświadczalnej 2021;75:959-69. [DOI: 10.2478/ahem-2021-0007] [Reference Citation Analysis]
51 Walker LC, Lawrence AJ. The Role of Orexins/Hypocretins in Alcohol Use and Abuse. In: Lawrence AJ, de Lecea L, editors. Behavioral Neuroscience of Orexin/Hypocretin. Cham: Springer International Publishing; 2017. pp. 221-46. [DOI: 10.1007/7854_2016_55] [Cited by in Crossref: 24] [Cited by in F6Publishing: 22] [Article Influence: 4.0] [Reference Citation Analysis]
52 Burnette EM, Nieto SJ, Grodin EN, Meredith LR, Hurley B, Miotto K, Gillis AJ, Ray LA. Novel Agents for the Pharmacological Treatment of Alcohol Use Disorder. Drugs 2022. [PMID: 35133639 DOI: 10.1007/s40265-021-01670-3] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
53 Perrey DA, Zhang Y. Therapeutics development for addiction: Orexin-1 receptor antagonists. Brain Res 2020;1731:145922. [PMID: 30148984 DOI: 10.1016/j.brainres.2018.08.025] [Cited by in Crossref: 22] [Cited by in F6Publishing: 23] [Article Influence: 5.5] [Reference Citation Analysis]
54 Barson JR. Orexin/hypocretin and dysregulated eating: Promotion of foraging behavior. Brain Res 2020;1731:145915. [PMID: 30125533 DOI: 10.1016/j.brainres.2018.08.018] [Cited by in Crossref: 10] [Cited by in F6Publishing: 15] [Article Influence: 2.5] [Reference Citation Analysis]
55 Matzeu A, Martin-Fardon R. Blockade of Orexin Receptors in the Posterior Paraventricular Nucleus of the Thalamus Prevents Stress-Induced Reinstatement of Reward-Seeking Behavior in Rats With a History of Ethanol Dependence. Front Integr Neurosci 2020;14:599710. [PMID: 33240054 DOI: 10.3389/fnint.2020.599710] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
56 Fattore L, Diana M. Drug addiction: An affective-cognitive disorder in need of a cure. Neuroscience & Biobehavioral Reviews 2016;65:341-61. [DOI: 10.1016/j.neubiorev.2016.04.006] [Cited by in Crossref: 35] [Cited by in F6Publishing: 30] [Article Influence: 5.8] [Reference Citation Analysis]
57 Anderson RI, Moorman DE, Becker HC. Contribution of Dynorphin and Orexin Neuropeptide Systems to the Motivational Effects of Alcohol. Handb Exp Pharmacol 2018;248:473-503. [PMID: 29526023 DOI: 10.1007/164_2018_100] [Cited by in Crossref: 9] [Cited by in F6Publishing: 8] [Article Influence: 3.0] [Reference Citation Analysis]
58 Muthmainah M, Gogos A, Sumithran P, Brown RM. Orexins (hypocretins): The intersection between homeostatic and hedonic feeding. J Neurochem 2021;157:1473-94. [PMID: 33608877 DOI: 10.1111/jnc.15328] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]