BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Guiler W, Koehler A, Boykin C, Lu Q. Pharmacological Modulators of Small GTPases of Rho Family in Neurodegenerative Diseases. Front Cell Neurosci 2021;15:661612. [PMID: 34054432 DOI: 10.3389/fncel.2021.661612] [Cited by in Crossref: 15] [Cited by in F6Publishing: 18] [Article Influence: 7.5] [Reference Citation Analysis]
Number Citing Articles
1 Umbayev B, Safarova Yantsen Y, Yermekova A, Nessipbekova A, Syzdykova A, Askarova S. Role of a small GTPase Cdc42 in aging and age-related diseases. Biogerontology 2023;24:27-46. [PMID: 36598630 DOI: 10.1007/s10522-022-10008-9] [Reference Citation Analysis]
2 Nik Akhtar S, Bunner WP, Brennan E, Lu Q, Szatmari EM. Crosstalk between the Rho and Rab family of small GTPases in neurodegenerative disorders. Front Cell Neurosci 2023;17. [DOI: 10.3389/fncel.2023.1084769] [Reference Citation Analysis]
3 Yu JH, Moon EY, Kim J, Koo JH. Identification of Small GTPases That Phosphorylate IRF3 through TBK1 Activation Using an Active Mutant Library Screen. Biomol Ther (Seoul) 2023;31:48-58. [PMID: 36579460 DOI: 10.4062/biomolther.2022.119] [Reference Citation Analysis]
4 Bloch-Gallego E, Anderson DI. Key role of Rho GTPases in motor disorders associated with neurodevelopmental pathologies. Mol Psychiatry 2023;28:118-26. [PMID: 35918397 DOI: 10.1038/s41380-022-01702-8] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Chen M, Jia S, Xue M, Huang H, Xu Z, Yang D, Zhu W, Song Q. Dual-Stream Subspace Clustering Network for revealing gene targets in Alzheimer's disease. Comput Biol Med 2022;151:106305. [PMID: 36401971 DOI: 10.1016/j.compbiomed.2022.106305] [Reference Citation Analysis]
6 Kholmanskikh S, Singh S, Ross ME. Activation of RhoC by regulatory ubiquitination is mediated by LNX1 and suppressed by LIS1. Sci Rep 2022;12:16493. [PMID: 36192543 DOI: 10.1038/s41598-022-19740-1] [Reference Citation Analysis]
7 González B, Aldea M, Cullen PJ. Exploring the Regulation of Cdc42 Stability and Turnover in Yeast.. [DOI: 10.1101/2022.09.30.510332] [Reference Citation Analysis]
8 C Silva T, Young JI, Zhang L, Gomez L, Schmidt MA, Varma A, Chen XS, Martin ER, Wang L. Cross-tissue analysis of blood and brain epigenome-wide association studies in Alzheimer's disease. Nat Commun 2022;13:4852. [PMID: 35982059 DOI: 10.1038/s41467-022-32475-x] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Chen M, Wu R. Homozygous mutation of the LRRK2 ROC domain as a novel genetic model of parkinsonism. J Biomed Sci 2022;29. [DOI: 10.1186/s12929-022-00844-9] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Donta MS, Srivastava Y, Mccrea PD. Delta-Catenin as a Modulator of Rho GTPases in Neurons. Front Cell Neurosci 2022;16:939143. [DOI: 10.3389/fncel.2022.939143] [Reference Citation Analysis]
11 Deng Y, Song H, Xiao Y, Zhao Y, Chu L, Ding J, Shen X, Qi X. High-Throughput Sequencing to Investigate lncRNA-circRNA-miRNA-mRNA Networks Underlying the Effects of Beta-Amyloid Peptide and Senescence on Astrocytes. Front Genet 2022;13:868856. [DOI: 10.3389/fgene.2022.868856] [Reference Citation Analysis]
12 Lu Q, Chen YH. TRPV4: En RhoA To a Cure? Bioessays 2022;:e2200071. [PMID: 35441721 DOI: 10.1002/bies.202200071] [Reference Citation Analysis]
13 Silva TC, Young JI, Zhang L, Gomez L, Schmidt MA, Varma A, Chen XS, Martin ER, Wang L. Cross-tissue meta-analysis of blood and brain epigenome-wide association studies in Alzheimer’s disease.. [DOI: 10.1101/2022.04.11.22273748] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
14 Zhu Z, Lu J, Wang S, Peng W, Yang Y, Chen C, Zhou X, Yang X, Xin W, Chen X, Pi J, Yin W, Yao L, Pi R. Acrolein, an endogenous aldehyde induces synaptic dysfunction in vitro and in vivo: Involvement of RhoA/ROCK2 pathway. Aging Cell 2022;21:e13587. [PMID: 35315217 DOI: 10.1111/acel.13587] [Reference Citation Analysis]
15 Bagnell AM, Sumner CJ, McCray BA. TRPV4: A trigger of pathological RhoA activation in neurological disease. Bioessays 2022;:e2100288. [PMID: 35297520 DOI: 10.1002/bies.202100288] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
16 Khan AH, Lee LK, Smith DJ. Single cell analysis of gene expression in the substantia nigra pars compacta of a pesticide-induced mouse model of Parkinson’s disease.. [DOI: 10.1101/2022.02.18.481079] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Khan AH, Lee LK, Smith DJ. Single-cell analysis of gene expression in the substantia nigra pars compacta of a pesticide-induced mouse model of Parkinson's disease. Transl Neurosci 2022;13:255-69. [PMID: 36117858 DOI: 10.1515/tnsci-2022-0237] [Reference Citation Analysis]
18 Xu J, Wen J, Fu L, Liao L, Zou Y, Zhang J, Deng J, Zhang H, Liu J, Wang X, Zuo D, Guo J. Macrophage-specific RhoA knockout delays Wallerian degeneration after peripheral nerve injury in mice. J Neuroinflammation 2021;18:234. [PMID: 34654444 DOI: 10.1186/s12974-021-02292-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
19 Kim Y, Lasso G, Patel H, Vardarajan B, Santa-maria I, Lefort R. Alzheimer’s disease-associated P460L mutation in ephrin receptor type A1 (EphA1) leads to dysregulated Rho-GTPase signaling.. [DOI: 10.1101/2021.06.17.448790] [Reference Citation Analysis]