BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Bernaus A, Blanco S, Sevilla A. Glia Crosstalk in Neuroinflammatory Diseases. Front Cell Neurosci 2020;14:209. [PMID: 32848613 DOI: 10.3389/fncel.2020.00209] [Cited by in Crossref: 40] [Cited by in F6Publishing: 43] [Article Influence: 13.3] [Reference Citation Analysis]
Number Citing Articles
1 Tomasello DL, Barrasa MI, Mankus D, Alarcon KI, Lytton-jean AK, Liu XS, Jaenisch R. Rett Syndrome astrocytes disrupt neuronal activity and cerebral organoid development through transfer of dysfunctional mitochondria.. [DOI: 10.1101/2023.03.02.530903] [Reference Citation Analysis]
2 Huang Q, Chen C, Chen W, Cai C, Xing H, Li J, Li M, Ma S. Cell type- and region-specific translatomes in an MPTP mouse model of Parkinson's disease. Neurobiology of Disease 2023. [DOI: 10.1016/j.nbd.2023.106105] [Reference Citation Analysis]
3 Hourfar H, Aliakbari F, Aqdam SR, Nayeri Z, Bardania H, Otzen DE, Morshedi D. The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells. Int J Biol Macromol 2023;229:305-20. [PMID: 36535359 DOI: 10.1016/j.ijbiomac.2022.12.134] [Reference Citation Analysis]
4 Askari H, Rabiei F, Lohrasbi F, Ghadir S, Ghasemi-kasman M. The Latest Cellular and Molecular Mechanisms of COVID-19 on Non-Lung Organs. Brain Sciences 2023;13:415. [DOI: 10.3390/brainsci13030415] [Reference Citation Analysis]
5 Loonen AJM. Role of Neuroglia in the Habenular Connection Hub of the Dorsal Diencephalic Conduction System. Neuroglia 2023;4:34-51. [DOI: 10.3390/neuroglia4010004] [Reference Citation Analysis]
6 Krawczyk MC, Pan L, Zhang AJ, Zhang Y. Lymphocyte deficiency alters the transcriptomes of oligodendrocytes, but not astrocytes or microglia. PLoS One 2023;18:e0279736. [PMID: 36827449 DOI: 10.1371/journal.pone.0279736] [Reference Citation Analysis]
7 Di Mauro G, Amoriello R, Lozano N, Carnasciali A, Guasti D, Becucci M, Cellot G, Kostarelos K, Ballerini C, Ballerini L. Graphene Oxide Nanosheets Reduce Astrocyte Reactivity to Inflammation and Ameliorate Experimental Autoimmune Encephalomyelitis. ACS Nano 2023;17:1965-78. [PMID: 36692902 DOI: 10.1021/acsnano.2c06609] [Reference Citation Analysis]
8 Nam MK, Seong Y, Jeong GH, Yoo SA, Rhim H. HtrA2 regulates α-Synuclein-mediated mitochondrial reactive oxygen species production in the mitochondria of microglia. Biochem Biophys Res Commun 2023;638:84-93. [PMID: 36442236 DOI: 10.1016/j.bbrc.2022.11.049] [Reference Citation Analysis]
9 Ravizza T, Vezzani A, Baram TZ. Febrile status epilepticus-related epilepsy: Neuroinflammation and epigenetics. Febrile Seizures 2023. [DOI: 10.1016/b978-0-323-89932-1.00018-4] [Reference Citation Analysis]
10 Norouzi-Barough L, Asgari Khosroshahi A, Gorji A, Zafari F, Shahverdi Shahraki M, Shirian S. COVID-19-Induced Stroke and the Potential of Using Mesenchymal Stem Cells-Derived Extracellular Vesicles in the Regulation of Neuroinflammation. Cell Mol Neurobiol 2023;43:37-46. [PMID: 35025001 DOI: 10.1007/s10571-021-01169-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Tiwari P, Tiwari V, Gupta S, Shukla S, Hanif K. Activation of Angiotensin-converting Enzyme 2 Protects Against Lipopolysaccharide-induced Glial Activation by Modulating Angiotensin-converting Enzyme 2/Angiotensin (1-7)/Mas Receptor Axis. Mol Neurobiol 2023;60:203-27. [PMID: 36251234 DOI: 10.1007/s12035-022-03061-5] [Reference Citation Analysis]
12 Marangon D, Castro E Silva JH, Lecca D. Neuronal and Glial Communication via Non-Coding RNAs: Messages in Extracellular Vesicles. Int J Mol Sci 2022;24. [PMID: 36613914 DOI: 10.3390/ijms24010470] [Reference Citation Analysis]
13 Liu Z, Guan R, Bu F, Pan L. Treatment of Alzheimer's disease by combination of acupuncture and Chinese medicine based on pathophysiological mechanism: A review. Medicine (Baltimore) 2022;101:e32218. [PMID: 36626477 DOI: 10.1097/MD.0000000000032218] [Reference Citation Analysis]
14 Rifai OM, Longden J, O'Shaughnessy J, Sewell M, Pate J, McDade K, Daniels MJ, Abrahams S, Chandran S, McColl BW, Sibley CR, Gregory JM. Random forest modelling demonstrates microglial and protein misfolding features to be key phenotypic markers in C9orf72-ALS. J Pathol 2022;258:366-81. [PMID: 36070099 DOI: 10.1002/path.6008] [Cited by in Crossref: 3] [Cited by in F6Publishing: 2] [Article Influence: 3.0] [Reference Citation Analysis]
15 Jang Y, Thuraisamy T, Redding-Ochoa J, Pletnikova O, Troncoso JC, Rosenthal LS, Dawson TM, Pantelyat AY, Na CH. Mass spectrometry-based proteomics analysis of human globus pallidus from progressive supranuclear palsy patients discovers multiple disease pathways. Clin Transl Med 2022;12:e1076. [PMID: 36354133 DOI: 10.1002/ctm2.1076] [Reference Citation Analysis]
16 Toledano-Díaz A, Álvarez MI, Toledano A. The relationships between neuroglial alterations and neuronal changes in Alzheimer's disease, and the related controversies I: Gliopathogenesis and glioprotection. J Cent Nerv Syst Dis 2022;14:11795735221128703. [PMID: 36238130 DOI: 10.1177/11795735221128703] [Reference Citation Analysis]
17 Komal P, Manjari SKV, Nashmi R. An opinion on the debatable function of brain resident immune protein, T-cell receptor beta subunit in the central nervous system. IBRO Neurosci Rep 2022;13:235-42. [PMID: 36590097 DOI: 10.1016/j.ibneur.2022.09.003] [Reference Citation Analysis]
18 Rahman MM, Islam MR, Yamin M, Islam MM, Sarker MT, Meem AFK, Akter A, Emran TB, Cavalu S, Sharma R. Emerging Role of Neuron-Glia in Neurological Disorders: At a Glance. Oxid Med Cell Longev 2022;2022:3201644. [PMID: 36046684 DOI: 10.1155/2022/3201644] [Reference Citation Analysis]
19 Hourfar H, Aliakbari F, Aqdam SR, Nayeri Z, Bardania H, Otzen DE, Morshedi D. The impact of α-synuclein aggregates on blood-brain barrier integrity in the presence of neurovascular unit cells.. [DOI: 10.1101/2022.08.18.504449] [Reference Citation Analysis]
20 Fernández-arjona MDM, León-rodríguez A, Grondona JM, López-ávalos MD. Microbial neuraminidase induces TLR4-dependent long-term immune priming in the brain. Front Cell Neurosci 2022;16:945229. [DOI: 10.3389/fncel.2022.945229] [Reference Citation Analysis]
21 Darvish Khadem M, Tabandeh MR, Haschemi A, Kheirollah A, Shahriari A. Dimethyl itaconate reprograms neurotoxic to neuroprotective primary astrocytes through the regulation of NLRP3 inflammasome and NRF2/HO-1 pathways. Mol Cell Neurosci 2022;122:103758. [PMID: 35868484 DOI: 10.1016/j.mcn.2022.103758] [Reference Citation Analysis]
22 Almeida C, Pongilio RP, Móvio MI, Higa GSV, Resende RR, Jiang J, Kinjo ER, Kihara AH. Distinct Cell-specific Roles of NOX2 and MyD88 in Epileptogenesis. Front Cell Dev Biol 2022;10:926776. [DOI: 10.3389/fcell.2022.926776] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
23 Edamakanti CR, Mohan V, Opal P. Reactive Bergmann glia play a central role in Spinocerebellar ataxia inflammation via the JNK pathway.. [DOI: 10.1101/2022.06.29.498121] [Reference Citation Analysis]
24 Lange J, Zhou H, Mctague A. Cerebral Organoids and Antisense Oligonucleotide Therapeutics: Challenges and Opportunities. Front Mol Neurosci 2022;15:941528. [DOI: 10.3389/fnmol.2022.941528] [Reference Citation Analysis]
25 Sarić N, Hashimoto-Torii K, Jevtović-Todorović V, Ishibashi N. Nonapoptotic caspases in neural development and in anesthesia-induced neurotoxicity. Trends Neurosci 2022;45:446-58. [PMID: 35491256 DOI: 10.1016/j.tins.2022.03.007] [Cited by in Crossref: 2] [Article Influence: 2.0] [Reference Citation Analysis]
26 Stefano GB, Büttiker P, Weissenberger S, Ptacek R, Wang F, Esch T, Bilfinger TV, Raboch J, Kream RM. Biomedical Perspectives of Acute and Chronic Neurological and Neuropsychiatric Sequelae of COVID-19. Curr Neuropharmacol 2022;20:1229-40. [PMID: 34951387 DOI: 10.2174/1570159X20666211223130228] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
27 De Kleijn KMA, Straasheijm KR, Zuure WA, Martens GJM. Molecular Signature of Neuroinflammation Induced in Cytokine-Stimulated Human Cortical Spheroids. Biomedicines 2022;10:1025. [DOI: 10.3390/biomedicines10051025] [Reference Citation Analysis]
28 Rojas-rodríguez F, Pinzón A, Fuenmayor D, Barbosa T, Vesga Jimenez D, Martin C, E. Barreto G, Aristizabal-pachón A, Gonzalez J. Multi-Omic Epigenetic-Based Model Reveals Key Molecular Mechanisms Associated with Palmitic Acid Lipotoxicity in Human Astrocyte. Neurotoxicity - New Advances 2022. [DOI: 10.5772/intechopen.100133] [Reference Citation Analysis]
29 Habas A, Reddy Natala S, Bowden-Verhoek JK, Stocking EM, Price DL, Wrasidlo W, Bonhaus DW, Gill MB. NPT1220-312, a TLR2/TLR9 Small Molecule Antagonist, Inhibits Pro-Inflammatory Signaling, Cytokine Release, and NLRP3 Inflammasome Activation. Int J Inflam 2022;2022:2337363. [PMID: 35265316 DOI: 10.1155/2022/2337363] [Reference Citation Analysis]
30 Strafella C, Caputo V, Termine A, Fabrizio C, Calvino G, Megalizzi D, Ruffo P, Toppi E, Banaj N, Bassi A, Bossù P, Caltagirone C, Spalletta G, Giardina E, Cascella R. Identification of Genetic Networks Reveals Complex Associations and Risk Trajectory Linking Mild Cognitive Impairment to Alzheimer’s Disease. Front Aging Neurosci 2022;14:821789. [DOI: 10.3389/fnagi.2022.821789] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
31 Morissette M, Bourque M, Tremblay M, Di Paolo T. Prevention of L-Dopa-Induced Dyskinesias by MPEP Blockade of Metabotropic Glutamate Receptor 5 Is Associated with Reduced Inflammation in the Brain of Parkinsonian Monkeys. Cells 2022;11:691. [DOI: 10.3390/cells11040691] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
32 Cheng YY, Chen BY, Bian GL, Ding YX, Chen LW. Programmed Death-1 Deficiency Aggravates Motor Dysfunction in MPTP Model of Parkinson's Disease by Inducing Microglial Activation and Neuroinflammation in Mice. Mol Neurobiol 2022. [PMID: 35142987 DOI: 10.1007/s12035-022-02758-x] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
33 Xia Q, Zhan G, Mao M, Zhao Y, Li X. TRIM45 causes neuronal damage by aggravating microglia-mediated neuroinflammation upon cerebral ischemia and reperfusion injury. Exp Mol Med 2022;54:180-93. [PMID: 35217833 DOI: 10.1038/s12276-022-00734-y] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
34 Zelenka L, Pägelow D, Krüger C, Seele J, Ebner F, Rausch S, Rohde M, Lehnardt S, van Vorst K, Fulde M. Novel protocol for the isolation of highly purified neonatal murine microglia and astrocytes. J Neurosci Methods 2022;366:109420. [PMID: 34808220 DOI: 10.1016/j.jneumeth.2021.109420] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
35 Tan C, Liu Y, Zhang H, Di C, Xu D, Liang C, Zhang N, Han B, Lang W. Neuroprotective Effects of Probiotic-Supplemented Diet on Cognitive Behavior of 3xTg-AD Mice. J Healthc Eng 2022;2022:4602428. [PMID: 35035837 DOI: 10.1155/2022/4602428] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
36 Chavda V, Singh K, Patel V, Mishra M, Mishra AK. Neuronal Glial Crosstalk: Specific and Shared Mechanisms in Alzheimer’s Disease. Brain Sciences 2022;12:75. [DOI: 10.3390/brainsci12010075] [Cited by in Crossref: 5] [Cited by in F6Publishing: 4] [Article Influence: 5.0] [Reference Citation Analysis]
37 Toledano-díaz A, Álvarez MI, Toledano A. The relationships between neuroglial and neuronal changes in Alzheimer’s disease, and the related controversies II: gliotherapies and multimodal therapy. J Cent Nerv Syst Dis 2022;14:117957352211238. [DOI: 10.1177/11795735221123896] [Reference Citation Analysis]
38 Mcilwraith EK, Zhang N, Belsham DD. The Regulation of Phoenixin: A Fascinating Multidimensional Peptide. Journal of the Endocrine Society 2022;6:bvab192. [DOI: 10.1210/jendso/bvab192] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
39 Cong J, Lu K, Zou W, Li Z, Guo Z, Tong X, Zheng J, Zhu J, Li S, Zhang W, Guo Y, Gao TM, Chen R. Astroglial CB1 Cannabinoid Receptors Mediate CP 55,940-Induced Conditioned Place Aversion Through Cyclooxygenase-2 Signaling in Mice. Front Cell Neurosci 2021;15:772549. [PMID: 34887729 DOI: 10.3389/fncel.2021.772549] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
40 Boido M, De Amicis E, Mareschi K, Fagioli F, Vercelli A. Organotypic spinal cord cultures: An <em>in vitro</em> 3D model to preliminary screen treatments for spinal muscular atrophy. Eur J Histochem 2021;65. [PMID: 34734684 DOI: 10.4081/ejh.2021.3294] [Reference Citation Analysis]
41 Abuelezz NZ, Nasr FE, AbdulKader MA, Bassiouny AR, Zaky A. MicroRNAs as Potential Orchestrators of Alzheimer's Disease-Related Pathologies: Insights on Current Status and Future Possibilities. Front Aging Neurosci 2021;13:743573. [PMID: 34712129 DOI: 10.3389/fnagi.2021.743573] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
42 Soto-Verdugo J, Ortega A. Critical Involvement of Glial Cells in Manganese Neurotoxicity. Biomed Res Int 2021;2021:1596185. [PMID: 34660781 DOI: 10.1155/2021/1596185] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
43 Quincozes-Santos A, Santos CL, de Souza Almeida RR, da Silva A, Thomaz NK, Costa NLF, Weber FB, Schmitz I, Medeiros LS, Medeiros L, Dotto BS, Dias FRP, Sovrani V, Bobermin LD. Gliotoxicity and Glioprotection: the Dual Role of Glial Cells. Mol Neurobiol 2021. [PMID: 34581988 DOI: 10.1007/s12035-021-02574-9] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
44 Scassellati C, Galoforo AC, Esposito C, Ciani M, Ricevuti G, Bonvicini C. Promising Intervention Approaches to Potentially Resolve Neuroinflammation And Steroid Hormones Alterations in Alzheimer's Disease and Its Neuropsychiatric Symptoms. Aging Dis 2021;12:1337-57. [PMID: 34341712 DOI: 10.14336/AD.2021.0122] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
45 Hajinejad M, Sahab-Negah S. Neuroinflammation: The next target of exosomal microRNAs derived from mesenchymal stem cells in the context of neurological disorders. J Cell Physiol 2021. [PMID: 34189724 DOI: 10.1002/jcp.30495] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
46 Lindhout IA, Murray TE, Richards CM, Klegeris A. Potential neurotoxic activity of diverse molecules released by microglia. Neurochem Int 2021;148:105117. [PMID: 34186114 DOI: 10.1016/j.neuint.2021.105117] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
47 Wang L, Yu CC, Liu XY, Deng XN, Tian Q, Du YJ. Epigenetic Modulation of Microglia Function and Phenotypes in Neurodegenerative Diseases. Neural Plast 2021;2021:9912686. [PMID: 34194489 DOI: 10.1155/2021/9912686] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
48 Valenza M, Facchinetti R, Menegoni G, Steardo L, Scuderi C. Alternative Targets to Fight Alzheimer's Disease: Focus on Astrocytes. Biomolecules 2021;11:600. [PMID: 33921556 DOI: 10.3390/biom11040600] [Cited by in Crossref: 10] [Cited by in F6Publishing: 12] [Article Influence: 5.0] [Reference Citation Analysis]
49 Chowen JA, Garcia-Segura LM. Role of glial cells in the generation of sex differences in neurodegenerative diseases and brain aging. Mech Ageing Dev 2021;196:111473. [PMID: 33766745 DOI: 10.1016/j.mad.2021.111473] [Cited by in Crossref: 12] [Cited by in F6Publishing: 10] [Article Influence: 6.0] [Reference Citation Analysis]
50 Srivastava S, Ahmad R, Khare SK. Alzheimer's disease and its treatment by different approaches: A review. Eur J Med Chem 2021;216:113320. [PMID: 33652356 DOI: 10.1016/j.ejmech.2021.113320] [Cited by in Crossref: 59] [Cited by in F6Publishing: 67] [Article Influence: 29.5] [Reference Citation Analysis]
51 Angelopoulou E, Paudel YN, Piperi C. Role of Liver Growth Factor (LGF) in Parkinson's Disease: Molecular Insights and Therapeutic Opportunities. Mol Neurobiol 2021;58:3031-42. [PMID: 33608826 DOI: 10.1007/s12035-021-02326-9] [Reference Citation Analysis]
52 Brennan GP, Garcia-Curran MM, Patterson KP, Luo R, Baram TZ. Multiple Disruptions of Glial-Neuronal Networks in Epileptogenesis That Follows Prolonged Febrile Seizures. Front Neurol 2021;12:615802. [PMID: 33679583 DOI: 10.3389/fneur.2021.615802] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
53 Song N, Zhu H, Xu R, Liu J, Fang Y, Zhang J, Ding J, Hu G, Lu M. Induced Expression of kir6.2 in A1 Astrocytes Propagates Inflammatory Neurodegeneration via Drp1-dependent Mitochondrial Fission. Front Pharmacol 2020;11:618992. [PMID: 33584303 DOI: 10.3389/fphar.2020.618992] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
54 Wang F, Kream RM, Stefano GB. Long-Term Respiratory and Neurological Sequelae of COVID-19. Med Sci Monit 2020;26:e928996. [PMID: 33177481 DOI: 10.12659/MSM.928996] [Cited by in Crossref: 79] [Cited by in F6Publishing: 115] [Article Influence: 26.3] [Reference Citation Analysis]