BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Grassi E, Santoro R, Umbach A, Grosso A, Oliviero S, Neri F, Conti L, Ala U, Provero P, DiCunto F, Merlo GR. Choice of Alternative Polyadenylation Sites, Mediated by the RNA-Binding Protein Elavl3, Plays a Role in Differentiation of Inhibitory Neuronal Progenitors. Front Cell Neurosci 2018;12:518. [PMID: 30687010 DOI: 10.3389/fncel.2018.00518] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 5.0] [Reference Citation Analysis]
Number Citing Articles
1 Hilgers V. Regulation of neuronal RNA signatures by ELAV/Hu proteins. Wiley Interdiscip Rev RNA 2023;14:e1733. [PMID: 35429136 DOI: 10.1002/wrna.1733] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 2.0] [Reference Citation Analysis]
2 Cao J, Kuyumcu-Martinez MN. Alternative polyadenylation regulation in cardiac development and cardiovascular disease. Cardiovasc Res 2023:cvad014. [PMID: 36657944 DOI: 10.1093/cvr/cvad014] [Reference Citation Analysis]
3 Di Liegro CM, Schiera G, Schirò G, Di Liegro I. RNA-Binding Proteins as Epigenetic Regulators of Brain Functions and Their Involvement in Neurodegeneration. Int J Mol Sci 2022;23. [PMID: 36498959 DOI: 10.3390/ijms232314622] [Reference Citation Analysis]
4 Yu T, Xu X, Mao H, Han X, Liu Y, Zhang H, Lai J, Gu J, Xia M, Hu C, Li D. Fenpropathrin exposure induces neurotoxicity in zebrafish embryos. Fish Physiol Biochem 2022. [PMID: 36266516 DOI: 10.1007/s10695-022-01134-9] [Reference Citation Analysis]
5 Carrasco J, Mateos F, Hilgers V. A critical developmental window for ELAV/Hu-dependent mRNA signatures at the onset of neuronal differentiation. Cell Reports 2022;41:111542. [DOI: 10.1016/j.celrep.2022.111542] [Reference Citation Analysis]
6 Jia ZL, Zhu CY, Rajendran RS, Xia Q, Liu KC, Zhang Y. Impact of airborne total suspended particles (TSP) and fine particulate matter (PM2.5 )-induced developmental toxicity in zebrafish (Danio rerio) embryos. J Appl Toxicol 2022. [PMID: 35315093 DOI: 10.1002/jat.4325] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Wei L, Lai EC. Regulation of the Alternative Neural Transcriptome by ELAV/Hu RNA Binding Proteins. Front Genet 2022;13:848626. [PMID: 35281806 DOI: 10.3389/fgene.2022.848626] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 3.0] [Reference Citation Analysis]
8 Salamon I, Rasin M. Evolution of the Neocortex Through RNA-Binding Proteins and Post-transcriptional Regulation. Front Neurosci 2022;15:803107. [DOI: 10.3389/fnins.2021.803107] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Landínez-Macías M, Urwyler O. The Fine Art of Writing a Message: RNA Metabolism in the Shaping and Remodeling of the Nervous System. Front Mol Neurosci 2021;14:755686. [PMID: 34916907 DOI: 10.3389/fnmol.2021.755686] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
10 Huo XX, Wang SJ, Song H, Li MD, Yu H, Wang M, Gong HX, Qiu XT, Zhu YF, Zhang JY. Roles of Major RNA Adenosine Modifications in Head and Neck Squamous Cell Carcinoma. Front Pharmacol 2021;12:779779. [PMID: 34899345 DOI: 10.3389/fphar.2021.779779] [Reference Citation Analysis]
11 Chatterjee B, Shen CJ, Majumder P. RNA Modifications and RNA Metabolism in Neurological Disease Pathogenesis. Int J Mol Sci 2021;22:11870. [PMID: 34769301 DOI: 10.3390/ijms222111870] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
12 Yang X, Tong Y, Liu G, Yuan J, Yang Y. scAPAatlas: an atlas of alternative polyadenylation across cell types in human and mouse. Nucleic Acids Res 2021:gkab917. [PMID: 34643729 DOI: 10.1093/nar/gkab917] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
13 Dharmalingam P, Mahalingam R, Yalamanchili HK, Weng T, Karmouty-Quintana H, Guha A, A Thandavarayan R. Emerging roles of alternative cleavage and polyadenylation (APA) in human disease. J Cell Physiol 2021. [PMID: 34378793 DOI: 10.1002/jcp.30549] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
14 Yang Y, Paul A, Bach TN, Huang ZJ, Zhang MQ. Single-cell alternative polyadenylation analysis delineates GABAergic neuron types. BMC Biol 2021;19:144. [PMID: 34301239 DOI: 10.1186/s12915-021-01076-3] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
15 Goering R, Engel KL, Gillen AE, Fong N, Bentley DL, Taliaferro JM. LABRAT reveals association of alternative polyadenylation with transcript localization, RNA binding protein expression, transcription speed, and cancer survival. BMC Genomics 2021;22:476. [PMID: 34174817 DOI: 10.1186/s12864-021-07781-1] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 4.0] [Reference Citation Analysis]
16 Sommerkamp P, Cabezas-Wallscheid N, Trumpp A. Alternative Polyadenylation in Stem Cell Self-Renewal and Differentiation. Trends Mol Med 2021;27:660-72. [PMID: 33985920 DOI: 10.1016/j.molmed.2021.04.006] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 5.0] [Reference Citation Analysis]
17 Carrasco J, Rauer M, Hummel B, Grzejda D, Alfonso-Gonzalez C, Lee Y, Wang Q, Puchalska M, Mittler G, Hilgers V. ELAV and FNE Determine Neuronal Transcript Signatures through EXon-Activated Rescue. Mol Cell 2020;80:156-163.e6. [PMID: 33007255 DOI: 10.1016/j.molcel.2020.09.011] [Cited by in Crossref: 18] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
18 Schieweck R, Ninkovic J, Kiebler MA. RNA-binding proteins balance brain function in health and disease. Physiol Rev 2021;101:1309-70. [PMID: 33000986 DOI: 10.1152/physrev.00047.2019] [Cited by in Crossref: 19] [Cited by in F6Publishing: 20] [Article Influence: 6.3] [Reference Citation Analysis]
19 Kaczmarek Michaels K, Mohd Mostafa S, Ruiz Capella J, Moore CL. Regulation of alternative polyadenylation in the yeast Saccharomyces cerevisiae by histone H3K4 and H3K36 methyltransferases. Nucleic Acids Res 2020;48:5407-25. [PMID: 32356874 DOI: 10.1093/nar/gkaa292] [Cited by in Crossref: 15] [Cited by in F6Publishing: 15] [Article Influence: 5.0] [Reference Citation Analysis]
20 Bae B, Miura P. Emerging Roles for 3' UTRs in Neurons. Int J Mol Sci 2020;21:E3413. [PMID: 32408514 DOI: 10.3390/ijms21103413] [Cited by in Crossref: 29] [Cited by in F6Publishing: 32] [Article Influence: 9.7] [Reference Citation Analysis]
21 Loeliger BW, Hanu C, Panyutin IV, Maass-Moreno R, Wakim P, Pritchard WF, Neumann RD, Panyutin IG. Effect of Ionizing Radiation on Transcriptome during Neural Differentiation of Human Embryonic Stem Cells. Radiat Res 2020;193:460-70. [PMID: 32216708 DOI: 10.1667/RR15535.1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.3] [Reference Citation Analysis]
22 Navarro E, Mallén A, Cruzado JM, Torras J, Hueso M. Unveiling ncRNA regulatory axes in atherosclerosis progression. Clin Transl Med 2020;9:5. [PMID: 32009226 DOI: 10.1186/s40169-020-0256-3] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 5.7] [Reference Citation Analysis]
23 Brutman JN, Zhang S, Choi P, Zhang Y, Stotts MJ, Michal J, Jiang Z, Davis JF. Vapor Cannabis Exposure Promotes Genetic Plasticity in the Rat Hypothalamus. Sci Rep 2019;9:16866. [PMID: 31728018 DOI: 10.1038/s41598-019-53516-4] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]