BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Chabout J, Sarkar A, Patel SR, Radden T, Dunson DB, Fisher SE, Jarvis ED. A Foxp2 Mutation Implicated in Human Speech Deficits Alters Sequencing of Ultrasonic Vocalizations in Adult Male Mice. Front Behav Neurosci 2016;10:197. [PMID: 27812326 DOI: 10.3389/fnbeh.2016.00197] [Cited by in Crossref: 60] [Cited by in F6Publishing: 64] [Article Influence: 8.6] [Reference Citation Analysis]
Number Citing Articles
1 Wu Y, Jarvis ED, Sarkar A. Bayesian semiparametric Markov renewal mixed models for vocalization syntax. Biostatistics 2022:kxac050. [PMID: 36583955 DOI: 10.1093/biostatistics/kxac050] [Reference Citation Analysis]
2 Stoumpou V, Vargas CDM, Schade PF, Boyd JL, Giannakopoulos T, Jarvis ED. Analysis of Mouse Vocal Communication (AMVOC): a deep, unsupervised method for rapid detection, analysis and classification of ultrasonic vocalisations. Bioacoustics. [DOI: 10.1080/09524622.2022.2099973] [Reference Citation Analysis]
3 . Arts, Machines, and Creative Education. Advances in Media, Entertainment, and the Arts 2022. [DOI: 10.4018/978-1-7998-7840-7.ch008] [Reference Citation Analysis]
4 Zheng DJ, Okobi DE Jr, Shu R, Agrawal R, Smith SK, Long MA, Phelps SM. Mapping the vocal circuitry of Alston's singing mouse with pseudorabies virus. J Comp Neurol 2022. [PMID: 35385140 DOI: 10.1002/cne.25321] [Reference Citation Analysis]
5 Qi H, Luo L, Lu C, Chen R, Zhou X, Zhang X, Jia Y. TCF7L2 acts as a molecular switch in midbrain to control mammal vocalization through a transcriptional repression mechanism.. [DOI: 10.1101/2022.01.10.475593] [Reference Citation Analysis]
6 Schmidt ERE, Polleux F. Genetic Mechanisms Underlying the Evolution of Connectivity in the Human Cortex. Front Neural Circuits 2022;15:787164. [DOI: 10.3389/fncir.2021.787164] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
7 Binder MS, Pranske ZJ, Lugo JN. Evaluating the DeepSqueak and Mouse Song Analyzer vocalization analysis systems in C57BL/6J, FVB.129, and FVB neonates. J Neurosci Methods 2021;364:109356. [PMID: 34508783 DOI: 10.1016/j.jneumeth.2021.109356] [Reference Citation Analysis]
8 Kamitakahara AK, Ali Marandi Ghoddousi R, Lanjewar AL, Magalong VM, Wu HH, Levitt P. MET Receptor Tyrosine Kinase Regulates Lifespan Ultrasonic Vocalization and Vagal Motor Neuron Development. Front Neurosci 2021;15:768577. [PMID: 34803597 DOI: 10.3389/fnins.2021.768577] [Reference Citation Analysis]
9 Agarwalla S, Bandyopadhyay S. Social experience dependent plasticity of mouse song selectivity without that of song components.. [DOI: 10.1101/2021.10.26.466011] [Reference Citation Analysis]
10 Oliveira-stahl G, Farboud S, Sterling ML, Heckman JJ, van Raalte B, Lenferink D, van der Stam A, Smeets CJLM, Fisher SE, Englitz B. High-precision spatial analysis of mouse courtship vocalization behavior reveals sex and strain differences.. [DOI: 10.1101/2021.10.22.464496] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
11 von Merten S, Pfeifle C, Künzel S, Hoier S, Tautz D. A humanized version of Foxp2 affects ultrasonic vocalization in adult female and male mice. Genes Brain Behav 2021;20:e12764. [PMID: 34342113 DOI: 10.1111/gbb.12764] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
12 den Hoed J, Devaraju K, Fisher SE. Molecular networks of the FOXP2 transcription factor in the brain. EMBO Rep 2021;22:e52803. [PMID: 34260143 DOI: 10.15252/embr.202152803] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
13 Santos-Terra J, Deckmann I, Fontes-Dutra M, Schwingel GB, Bambini-Junior V, Gottfried C. Transcription factors in neurodevelopmental and associated psychiatric disorders: A potential convergence for genetic and environmental risk factors. Int J Dev Neurosci 2021. [PMID: 34240460 DOI: 10.1002/jdn.10141] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
14 Co M, Hickey SL, Kulkarni A, Harper M, Konopka G. Cortical Foxp2 Supports Behavioral Flexibility and Developmental Dopamine D1 Receptor Expression. Cereb Cortex 2020;30:1855-70. [PMID: 31711176 DOI: 10.1093/cercor/bhz209] [Cited by in Crossref: 17] [Cited by in F6Publishing: 16] [Article Influence: 8.5] [Reference Citation Analysis]
15 Ortiz-Juza MM, Alghorazi RA, Rodriguez-Romaguera J. Cell-type diversity in the bed nucleus of the stria terminalis to regulate motivated behaviors. Behav Brain Res 2021;411:113401. [PMID: 34090941 DOI: 10.1016/j.bbr.2021.113401] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
16 Turk AZ, Lotfi Marchoubeh M, Fritsch I, Maguire GA, SheikhBahaei S. Dopamine, vocalization, and astrocytes. Brain Lang 2021;219:104970. [PMID: 34098250 DOI: 10.1016/j.bandl.2021.104970] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
17 Warren MR, Spurrier MS, Sangiamo DT, Clein RS, Neunuebel JP. Mouse vocal emission and acoustic complexity do not scale linearly with the size of a social group. J Exp Biol 2021;224:jeb239814. [PMID: 34096599 DOI: 10.1242/jeb.239814] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
18 Xiao L, Merullo DP, Koch TMI, Cao M, Co M, Kulkarni A, Konopka G, Roberts TF. Expression of FoxP2 in the basal ganglia regulates vocal motor sequences in the adult songbird. Nat Commun 2021;12:2617. [PMID: 33976169 DOI: 10.1038/s41467-021-22918-2] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
19 Binder MS, Pranske ZP, Lugo JN. A comparison of the Mouse Song Analyzer and DeepSqueak ultrasonic vocalization analysis systems in C57BL/6J, FVB.129, and FVB mice.. [DOI: 10.1101/2021.03.17.435868] [Reference Citation Analysis]
20 Palazzo O, Rass M, Brembs B. Identification of FoxP circuits involved in locomotion and object fixation in Drosophila. Open Biol 2020;10:200295. [PMID: 33321059 DOI: 10.1098/rsob.200295] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.7] [Reference Citation Analysis]
21 Urbanus BHA, Peter S, Fisher SE, De Zeeuw CI. Region-specific Foxp2 deletions in cortex, striatum or cerebellum cannot explain vocalization deficits observed in spontaneous global knockouts. Sci Rep 2020;10:21631. [PMID: 33303861 DOI: 10.1038/s41598-020-78531-8] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
22 Valle-Bautista R, Márquez-Valadez B, Fragoso-Cabrera AD, García-López G, Díaz NF, Herrera-López G, Griego E, Galván EJ, Arias-Montaño JA, Molina-Hernández A. Impaired Cortical Cytoarchitecture and Reduced Excitability of Deep-Layer Neurons in the Offspring of Diabetic Rats. Front Cell Dev Biol 2020;8:564561. [PMID: 33042999 DOI: 10.3389/fcell.2020.564561] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
23 Binder M, Nolan SO, Lugo JN. A comparison of the Avisoft (v.5.2) and MATLAB Mouse Song Analyzer (v.1.3) vocalization analysis systems in C57BL/6, Fmr1-FVB.129, NS-Pten-FVB, and 129 mice. J Neurosci Methods 2020;346:108913. [PMID: 32805316 DOI: 10.1016/j.jneumeth.2020.108913] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
24 Palazzo O, Raß M, Brembs B. Identification of FoxP circuits involved in locomotion and object fixation in Drosophila.. [DOI: 10.1101/2020.07.15.204677] [Reference Citation Analysis]
25 Agarwalla S, Arroyo NS, Long NE, O'Brien WT, Abel T, Bandyopadhyay S. Male-specific alterations in structure of isolation call sequences of mouse pups with 16p11.2 deletion. Genes Brain Behav 2020;19:e12681. [PMID: 32558237 DOI: 10.1111/gbb.12681] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.7] [Reference Citation Analysis]
26 Hertz S, Weiner B, Perets N, London M. Temporal structure of mouse courtship vocalizations facilitates syllable labeling. Commun Biol 2020;3:333. [PMID: 32591576 DOI: 10.1038/s42003-020-1053-7] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 2.7] [Reference Citation Analysis]
27 Tiwary BK. The cognitive and speech genes are jointly shaped by both positive and relaxed selection in the human lineage. Genomics 2020;112:2922-7. [PMID: 32387504 DOI: 10.1016/j.ygeno.2020.05.006] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]
28 Nicolakis D, Marconi MA, Zala SM, Penn DJ. Ultrasonic vocalizations in house mice depend upon genetic relatedness of mating partners and correlate with subsequent reproductive success. Front Zool 2020;17:10. [PMID: 32265997 DOI: 10.1186/s12983-020-00353-1] [Cited by in Crossref: 11] [Cited by in F6Publishing: 11] [Article Influence: 3.7] [Reference Citation Analysis]
29 Medvedeva VP, Rieger MA, Vieth B, Mombereau C, Ziegenhain C, Ghosh T, Cressant A, Enard W, Granon S, Dougherty JD, Groszer M. Altered social behavior in mice carrying a cortical Foxp2 deletion. Hum Mol Genet 2019;28:701-17. [PMID: 30357341 DOI: 10.1093/hmg/ddy372] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 6.3] [Reference Citation Analysis]
30 Yurlova DD, Volodin IA, Ilchenko OG, Volodina EV. Rapid development of mature vocal patterns of ultrasonic calls in a fast-growing rodent, the yellow steppe lemming (Eolagurus luteus). PLoS One 2020;15:e0228892. [PMID: 32045453 DOI: 10.1371/journal.pone.0228892] [Cited by in Crossref: 14] [Cited by in F6Publishing: 14] [Article Influence: 4.7] [Reference Citation Analysis]
31 Tachibana RO, Kanno K, Okabe S, Kobayasi KI, Okanoya K. USVSEG: A robust method for segmentation of ultrasonic vocalizations in rodents. PLoS One 2020;15:e0228907. [PMID: 32040540 DOI: 10.1371/journal.pone.0228907] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 9.3] [Reference Citation Analysis]
32 Co M, Anderson AG, Konopka G. FOXP transcription factors in vertebrate brain development, function, and disorders. Wiley Interdiscip Rev Dev Biol 2020;9:e375. [PMID: 31999079 DOI: 10.1002/wdev.375] [Cited by in Crossref: 25] [Cited by in F6Publishing: 28] [Article Influence: 8.3] [Reference Citation Analysis]
33 Norton P, Barschke P, Scharff C, Mendoza E. Differential Song Deficits after Lentivirus-Mediated Knockdown of FoxP1, FoxP2, or FoxP4 in Area X of Juvenile Zebra Finches. J Neurosci 2019;39:9782-96. [PMID: 31641053 DOI: 10.1523/JNEUROSCI.1250-19.2019] [Cited by in Crossref: 16] [Cited by in F6Publishing: 17] [Article Influence: 4.0] [Reference Citation Analysis]
34 Screven LA, Dent ML. Perception of Ultrasonic Vocalizations by Socially Housed and Isolated Mice. eNeuro 2019;6:ENEURO. [PMID: 31570420 DOI: 10.1523/ENEURO.0049-19.2019] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 2.8] [Reference Citation Analysis]
35 Jarvis ED. Evolution of vocal learning and spoken language. Science 2019;366:50-4. [PMID: 31604300 DOI: 10.1126/science.aax0287] [Cited by in Crossref: 97] [Cited by in F6Publishing: 97] [Article Influence: 24.3] [Reference Citation Analysis]
36 Han TU, Root J, Reyes LD, Huchinson EB, Hoffmann JD, Lee WS, Barnes TD, Drayna D. Human GNPTAB stuttering mutations engineered into mice cause vocalization deficits and astrocyte pathology in the corpus callosum. Proc Natl Acad Sci U S A 2019;116:17515-24. [PMID: 31405983 DOI: 10.1073/pnas.1901480116] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 5.5] [Reference Citation Analysis]
37 Peleh T, Eltokhi A, Pitzer C. Longitudinal analysis of ultrasonic vocalizations in mice from infancy to adolescence: Insights into the vocal repertoire of three wild-type strains in two different social contexts. PLoS One 2019;14:e0220238. [PMID: 31365551 DOI: 10.1371/journal.pone.0220238] [Cited by in Crossref: 16] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
38 Coffey KR, Marx RE, Neumaier JF. DeepSqueak: a deep learning-based system for detection and analysis of ultrasonic vocalizations. Neuropsychopharmacology 2019;44:859-68. [PMID: 30610191 DOI: 10.1038/s41386-018-0303-6] [Cited by in Crossref: 124] [Cited by in F6Publishing: 126] [Article Influence: 31.0] [Reference Citation Analysis]
39 Gao SC, Wei YC, Wang SR, Xu XH. Medial Preoptic Area Modulates Courtship Ultrasonic Vocalization in Adult Male Mice. Neurosci Bull 2019;35:697-708. [PMID: 30900143 DOI: 10.1007/s12264-019-00365-w] [Cited by in Crossref: 30] [Cited by in F6Publishing: 19] [Article Influence: 7.5] [Reference Citation Analysis]
40 Elvevåg B, Foltz PW, Rosenstein M, Ferrer-I-Cancho R, De Deyne S, Mizraji E, Cohen A. Thoughts About Disordered Thinking: Measuring and Quantifying the Laws of Order and Disorder. Schizophr Bull 2017;43:509-13. [PMID: 28402507 DOI: 10.1093/schbul/sbx040] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 4.0] [Reference Citation Analysis]
41 Screven LA, Dent ML. Social isolation produces no effect on ultrasonic vocalization production in adult female CBA/CaJ mice. PLoS One 2019;14:e0213068. [PMID: 30835741 DOI: 10.1371/journal.pone.0213068] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 1.8] [Reference Citation Analysis]
42 Castells-Nobau A, Eidhof I, Fenckova M, Brenman-Suttner DB, Scheffer-de Gooyert JM, Christine S, Schellevis RL, van der Laan K, Quentin C, van Ninhuijs L, Hofmann F, Ejsmont R, Fisher SE, Kramer JM, Sigrist SJ, Simon AF, Schenck A. Conserved regulation of neurodevelopmental processes and behavior by FoxP in Drosophila. PLoS One 2019;14:e0211652. [PMID: 30753188 DOI: 10.1371/journal.pone.0211652] [Cited by in Crossref: 17] [Cited by in F6Publishing: 19] [Article Influence: 4.3] [Reference Citation Analysis]
43 Schatton A, Agoro J, Mardink J, Leboulle G, Scharff C. Identification of the neurotransmitter profile of AmFoxP expressing neurons in the honeybee brain using double-label in situ hybridization. BMC Neurosci 2018;19:69. [PMID: 30400853 DOI: 10.1186/s12868-018-0469-1] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.4] [Reference Citation Analysis]
44 Castellucci GA, Calbick D, McCormick D. The temporal organization of mouse ultrasonic vocalizations. PLoS One 2018;13:e0199929. [PMID: 30376572 DOI: 10.1371/journal.pone.0199929] [Cited by in Crossref: 37] [Cited by in F6Publishing: 39] [Article Influence: 7.4] [Reference Citation Analysis]
45 Zhang S, Zhao J, Guo Z, Jones JA, Liu P, Liu H. The Association Between Genetic Variation in FOXP2 and Sensorimotor Control of Speech Production. Front Neurosci 2018;12:666. [PMID: 30294257 DOI: 10.3389/fnins.2018.00666] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 0.6] [Reference Citation Analysis]
46 French CA, Vinueza Veloz MF, Zhou K, Peter S, Fisher SE, Costa RM, De Zeeuw CI. Differential effects of Foxp2 disruption in distinct motor circuits. Mol Psychiatry 2019;24:447-62. [PMID: 30108312 DOI: 10.1038/s41380-018-0199-x] [Cited by in Crossref: 16] [Cited by in F6Publishing: 21] [Article Influence: 3.2] [Reference Citation Analysis]
47 Xu S, Liu P, Chen Y, Chen Y, Zhang W, Zhao H, Cao Y, Wang F, Jiang N, Lin S, Li B, Zhang Z, Wei Z, Fan Y, Jin Y, He L, Zhou R, Dekker JD, Tucker HO, Fisher SE, Yao Z, Liu Q, Xia X, Guo X. Foxp2 regulates anatomical features that may be relevant for vocal behaviors and bipedal locomotion. Proc Natl Acad Sci U S A 2018;115:8799-804. [PMID: 30104377 DOI: 10.1073/pnas.1721820115] [Cited by in Crossref: 28] [Cited by in F6Publishing: 29] [Article Influence: 5.6] [Reference Citation Analysis]
48 Atkinson EG, Audesse AJ, Palacios JA, Bobo DM, Webb AE, Ramachandran S, Henn BM. No Evidence for Recent Selection at FOXP2 among Diverse Human Populations. Cell 2018;174:1424-1435.e15. [PMID: 30078708 DOI: 10.1016/j.cell.2018.06.048] [Cited by in Crossref: 57] [Cited by in F6Publishing: 36] [Article Influence: 11.4] [Reference Citation Analysis]
49 Fong WL, Kuo HY, Wu HL, Chen SY, Liu FC. Differential and Overlapping Pattern of Foxp1 and Foxp2 Expression in the Striatum of Adult Mouse Brain. Neuroscience 2018;388:214-23. [PMID: 30031127 DOI: 10.1016/j.neuroscience.2018.07.017] [Cited by in Crossref: 11] [Cited by in F6Publishing: 9] [Article Influence: 2.2] [Reference Citation Analysis]
50 Sarkar A, Chabout J, Macopson JJ, Jarvis ED, Dunson DB. Bayesian Semiparametric Mixed Effects Markov Models With Application to Vocalization Syntax. Journal of the American Statistical Association 2018;113:1515-27. [DOI: 10.1080/01621459.2018.1423986] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 0.4] [Reference Citation Analysis]
51 Korlach J, Gedman G, Kingan SB, Chin CS, Howard JT, Audet JN, Cantin L, Jarvis ED. De novo PacBio long-read and phased avian genome assemblies correct and add to reference genes generated with intermediate and short reads. Gigascience 2017;6:1-16. [PMID: 29020750 DOI: 10.1093/gigascience/gix085] [Cited by in Crossref: 107] [Cited by in F6Publishing: 113] [Article Influence: 21.4] [Reference Citation Analysis]
52 Staes N, Bradley BJ, Hopkins WD, Sherwood CC. Genetic signatures of socio-communicative abilities in primates. Current Opinion in Behavioral Sciences 2018;21:33-8. [DOI: 10.1016/j.cobeha.2017.11.013] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 1.2] [Reference Citation Analysis]
53 Kuhlwilm M. The evolution of FOXP2 in the light of admixture. Current Opinion in Behavioral Sciences 2018;21:120-6. [DOI: 10.1016/j.cobeha.2018.04.006] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.8] [Reference Citation Analysis]
54 Ó Broin P, Beckert MV, Takahashi T, Izumi T, Ye K, Kang G, Pouso P, Topolski M, Pena JL, Hiroi N. Computational Analysis of Neonatal Mouse Ultrasonic Vocalization. Curr Protoc Mouse Biol 2018;8:e46. [PMID: 29927553 DOI: 10.1002/cpmo.46] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
55 Schatton A, Mendoza E, Grube K, Scharff C. FoxP in bees: A comparative study on the developmental and adult expression pattern in three bee species considering isoforms and circuitry. J Comp Neurol 2018;526:1589-610. [PMID: 29536541 DOI: 10.1002/cne.24430] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 0.8] [Reference Citation Analysis]
56 Miyagawa S, Lesure C, Nóbrega VA. Cross-Modality Information Transfer: A Hypothesis about the Relationship among Prehistoric Cave Paintings, Symbolic Thinking, and the Emergence of Language. Front Psychol 2018;9:115. [PMID: 29515474 DOI: 10.3389/fpsyg.2018.00115] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 1.6] [Reference Citation Analysis]
57 Burkett ZD, Day NF, Kimball TH, Aamodt CM, Heston JB, Hilliard AT, Xiao X, White SA. FoxP2 isoforms delineate spatiotemporal transcriptional networks for vocal learning in the zebra finch. Elife 2018;7:e30649. [PMID: 29360038 DOI: 10.7554/eLife.30649] [Cited by in Crossref: 13] [Cited by in F6Publishing: 15] [Article Influence: 2.6] [Reference Citation Analysis]
58 Deriziotis P, Fisher SE. Speech and Language: Translating the Genome. Trends in Genetics 2017;33:642-56. [DOI: 10.1016/j.tig.2017.07.002] [Cited by in Crossref: 42] [Cited by in F6Publishing: 45] [Article Influence: 7.0] [Reference Citation Analysis]
59 Sollis E, Deriziotis P, Saitsu H, Miyake N, Matsumoto N, Hoffer MJV, Ruivenkamp CAL, Alders M, Okamoto N, Bijlsma EK, Plomp AS, Fisher SE. Equivalent missense variant in the FOXP2 and FOXP1 transcription factors causes distinct neurodevelopmental disorders. Hum Mutat 2017;38:1542-54. [PMID: 28741757 DOI: 10.1002/humu.23303] [Cited by in Crossref: 18] [Cited by in F6Publishing: 20] [Article Influence: 3.0] [Reference Citation Analysis]
60 Van Segbroeck M, Knoll AT, Levitt P, Narayanan S. MUPET-Mouse Ultrasonic Profile ExTraction: A Signal Processing Tool for Rapid and Unsupervised Analysis of Ultrasonic Vocalizations. Neuron 2017;94:465-485.e5. [PMID: 28472651 DOI: 10.1016/j.neuron.2017.04.005] [Cited by in Crossref: 85] [Cited by in F6Publishing: 88] [Article Influence: 14.2] [Reference Citation Analysis]
61 Crespi B, Read S, Hurd P. Segregating polymorphisms of FOXP2 are associated with measures of inner speech, speech fluency and strength of handedness in a healthy population. Brain Lang 2017;173:33-40. [PMID: 28609679 DOI: 10.1016/j.bandl.2017.06.002] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 1.3] [Reference Citation Analysis]
62 Busan P, Battaglini P, Sommer M. Transcranial magnetic stimulation in developmental stuttering: Relations with previous neurophysiological research and future perspectives. Clinical Neurophysiology 2017;128:952-64. [DOI: 10.1016/j.clinph.2017.03.039] [Cited by in Crossref: 10] [Cited by in F6Publishing: 9] [Article Influence: 1.7] [Reference Citation Analysis]
63 Mendoza E, Scharff C. Protein-Protein Interaction Among the FoxP Family Members and their Regulation of Two Target Genes, VLDLR and CNTNAP2 in the Zebra Finch Song System. Front Mol Neurosci 2017;10:112. [PMID: 28507505 DOI: 10.3389/fnmol.2017.00112] [Cited by in Crossref: 18] [Cited by in F6Publishing: 19] [Article Influence: 3.0] [Reference Citation Analysis]
64 Aboitiz F. Talking Heads. A Brain for Speech 2017. [DOI: 10.1057/978-1-137-54060-7_10] [Reference Citation Analysis]