BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zhang Y, Zhao Y, Ao X, Yu W, Zhang L, Wang Y, Chang W. The Role of Non-coding RNAs in Alzheimer's Disease: From Regulated Mechanism to Therapeutic Targets and Diagnostic Biomarkers. Front Aging Neurosci 2021;13:654978. [PMID: 34276336 DOI: 10.3389/fnagi.2021.654978] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 4.0] [Reference Citation Analysis]
Number Citing Articles
1 Almohaimeed HM, Assiri R, Althubaiti EH, Aggad WS, Shaheen S, Shaheen MY, Batarfi MA, Alharbi NA, Alshehri AM, Alkhudhairy BSM. Non-coding RNAs as key players in the neurodegenerative diseases: Multi-platform strategies and approaches for exploring the Genome's dark matter. J Chem Neuroanat 2023;129:102236. [PMID: 36709005 DOI: 10.1016/j.jchemneu.2023.102236] [Reference Citation Analysis]
2 Ghiam S, Eslahchi C, Shahpasand K, Habibi-Rezaei M, Gharaghani S. Identification of repurposed drugs targeting significant long non-coding RNAs in the cross-talk between diabetes mellitus and Alzheimer's disease. Sci Rep 2022;12:18332. [PMID: 36316461 DOI: 10.1038/s41598-022-22822-9] [Reference Citation Analysis]
3 Xie Z, Wang C, Li L, Chen X, Wei G, Chi Y, Liang Y, Lan L, Hong J, Li L. lncRNA-AC130710/miR-129-5p/mGluR1 axis promote migration and invasion by activating PKCα-MAPK signal pathway in melanoma. Open Med (Wars) 2022;17:1612-22. [PMID: 36329788 DOI: 10.1515/med-2022-0587] [Reference Citation Analysis]
4 Martín-martín Y, Pérez-garcía A, Torrecilla-parra M, Fernández-de Frutos M, Pardo-marqués V, Casarejos MJ, Busto R, Ramírez CM. New Insights on the Regulation of the Insulin-Degrading Enzyme: Role of microRNAs and RBPs. Cells 2022;11:2538. [DOI: 10.3390/cells11162538] [Reference Citation Analysis]
5 Chen X, Hu J, Lai J, Zhang Z, Tang Z, Vassilakopoulos TI. Dexmedetomidine Attenuates LPS-Stimulated Alveolar Type II Cells’ Injury through Upregulation of miR-140-3p and Partial Suppression of PD-L1 Involving Inactivating JNK-Bnip3 Pathway. Canadian Respiratory Journal 2022;2022:1-11. [DOI: 10.1155/2022/8433960] [Reference Citation Analysis]
6 Khodayi-Shahrak M, Khalaj-Kondori M, Hosseinpour Feizi MA, Talebi M. Insights into the mechanisms of non-coding RNAs' implication in the pathogenesis of Alzheimer's disease. EXCLI J 2022;21:921-40. [PMID: 36110561 DOI: 10.17179/excli2022-5006] [Reference Citation Analysis]
7 Pérez-garcía A, Torrecilla-parra M, Fernández-de Frutos M, Martín-martín Y, Pardo-marqués V, Ramírez CM. Posttranscriptional Regulation of Insulin Resistance: Implications for Metabolic Diseases. Biomolecules 2022;12:208. [DOI: 10.3390/biom12020208] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
8 Li W, Jin G. The circRNA and Role in Alzheimer’s Disease: From Regulation to Therapeutic and Diagnostic Targets. Hippocampus - Cytoarchitecture and Diseases 2022. [DOI: 10.5772/intechopen.99893] [Reference Citation Analysis]
9 Liu Y, Chen X, Che Y, Li H, Zhang Z, Peng W, Yang J. LncRNAs as the Regulators of Brain Function and Therapeutic Targets for Alzheimer’s Disease. Aging and disease 2022;13:837. [DOI: 10.14336/ad.2021.1119] [Reference Citation Analysis]
10 Policarpo R, d’Ydewalle C. Missing lnc(RNAs) in Alzheimer’s Disease? Genes 2021;13:39. [DOI: 10.3390/genes13010039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]