BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Mishra R, Banerjea AC. SARS-CoV-2 Spike Targets USP33-IRF9 Axis via Exosomal miR-148a to Activate Human Microglia. Front Immunol 2021;12:656700. [PMID: 33936086 DOI: 10.3389/fimmu.2021.656700] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
Number Citing Articles
1 Xu G, Yan H, Zhu Y, Xie Z, Zhang R, Jiang S. Duck hepatitis A virus type 1 transmission by exosomes establishes a productive infection in vivo and in vitro. Vet Microbiol 2023;277:109621. [PMID: 36525908 DOI: 10.1016/j.vetmic.2022.109621] [Reference Citation Analysis]
2 Paul A, Ismail MN, Tang TH, Ng SK. Phosphorylation of interferon regulatory factor 9 (IRF9). Mol Biol Rep 2023;:1-9. [PMID: 36662450 DOI: 10.1007/s11033-023-08253-3] [Reference Citation Analysis]
3 Liang Y, Fang D, Gao X, Deng X, Chen N, Wu J, Zeng M, Luo M. Circulating microRNAs as emerging regulators of COVID-19. Theranostics 2023;13:125-47. [PMID: 36593971 DOI: 10.7150/thno.78164] [Reference Citation Analysis]
4 Asadi K, Amini A, Gholami A. Mesenchymal stem cell-derived exosomes as a bioinspired nanoscale tool toward next-generation cell-free treatment. Journal of Drug Delivery Science and Technology 2022;77:103856. [DOI: 10.1016/j.jddst.2022.103856] [Reference Citation Analysis]
5 Baek S, Yang S, Lee I. COVID-GWAB: A Web-Based Prediction of COVID-19 Host Genes via Network Boosting of Genome-Wide Association Data. Biomolecules 2022;12:1446. [PMID: 36291657 DOI: 10.3390/biom12101446] [Reference Citation Analysis]
6 Iacobucci I, Monaco V, Canè L, Bibbò F, Cioffi V, Cozzolino F, Guarino A, Zollo M, Monti M. Spike S1 domain interactome in non-pulmonary systems: A role beyond the receptor recognition. Front Mol Biosci 2022;9:975570. [DOI: 10.3389/fmolb.2022.975570] [Reference Citation Analysis]
7 Liu L, Zhang Y, Chen Y, Zhao Y, Shen J, Wu X, Li M, Chen M, Li X, Sun Y, Gu L, Li W, Wang F, Yao L, Zhang Z, Xiao Z, Du F. Therapeutic prospects of ceRNAs in COVID-19. Front Cell Infect Microbiol 2022;12:998748. [DOI: 10.3389/fcimb.2022.998748] [Reference Citation Analysis]
8 Roustai Geraylow K, Hemmati R, Kadkhoda S, Ghafouri-fard S. miRNA expression in COVID-19. Gene Reports 2022;28:101641. [DOI: 10.1016/j.genrep.2022.101641] [Reference Citation Analysis]
9 Mysiris DS, Vavougios GD, Karamichali E, Papoutsopoulou S, Stavrou VT, Papayianni E, Boutlas S, Mavridis T, Foka P, Zarogiannis SG, Gourgoulianis K, Xiromerisiou G. Post-COVID-19 Parkinsonism and Parkinson’s Disease Pathogenesis: The Exosomal Cargo Hypothesis. IJMS 2022;23:9739. [DOI: 10.3390/ijms23179739] [Reference Citation Analysis]
10 Moatar AI, Chis AR, Marian C, Sirbu I. Gene Network Analysis of the Transcriptome Impact of SARS-CoV-2 Interacting MicroRNAs in COVID-19 Disease. IJMS 2022;23:9239. [DOI: 10.3390/ijms23169239] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
11 Mishra R, Kumawat KL, Basu A, Banerjea AC. Japanese Encephalitis Virus infection increases USP42 to stabilize TRIM21 and OAS1 for neuroinflammatory and anti-viral response in human microglia. Virology 2022;573:131-40. [PMID: 35779335 DOI: 10.1016/j.virol.2022.06.012] [Reference Citation Analysis]
12 Seneff S, Nigh G, Kyriakopoulos AM, McCullough PA. Innate immune suppression by SARS-CoV-2 mRNA vaccinations: The role of G-quadruplexes, exosomes, and MicroRNAs. Food Chem Toxicol 2022;164:113008. [PMID: 35436552 DOI: 10.1016/j.fct.2022.113008] [Cited by in Crossref: 9] [Cited by in F6Publishing: 16] [Article Influence: 9.0] [Reference Citation Analysis]
13 Zhang Y, Guo W, Bi M, Liu W, Zhou L, Liu H, Yan F, Guan L, Zhang J, Xu J, Cabello-verrugio C. Migrasomes: From Biogenesis, Release, Uptake, Rupture to Homeostasis and Diseases. Oxidative Medicine and Cellular Longevity 2022;2022:1-13. [DOI: 10.1155/2022/4525778] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
14 Sabbatinelli J, Matacchione G, Giuliani A, Ramini D, Rippo MR, Procopio AD, Bonafè M, Olivieri F. Circulating biomarkers of inflammaging as potential biomarkers of COVID-19 severe outcomes. Mech Ageing Dev 2022;:111667. [PMID: 35341896 DOI: 10.1016/j.mad.2022.111667] [Reference Citation Analysis]
15 Savelieff MG, Feldman EL, Stino AM. Neurological sequela and disruption of neuron-glia homeostasis in SARS-CoV-2 infection. Neurobiology of Disease 2022. [DOI: 10.1016/j.nbd.2022.105715] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
16 Lodde V, Floris M, Munk R, Martindale JL, Piredda D, Napodano CMP, Cucca F, Uzzau S, Abdelmohsen K, Gorospe M, Noh JH, Idda ML. Systematic identification of NF90 target RNAs by iCLIP analysis. Sci Rep 2022;12:364. [PMID: 35013429 DOI: 10.1038/s41598-021-04101-1] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
17 Blaylock RL. Covid-19 pandemic: What is the truth? Surgical Neurology International 2021;12:591. [DOI: 10.25259/sni_1008_2021] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
18 Visacri MB, Nicoletti AS, Pincinato EC, Loren P, Saavedra N, Saavedra K, Salazar LA, Moriel P. Role of miRNAs as biomarkers of COVID-19: a scoping review of the status and future directions for research in this field. Biomark Med 2021;15:1785-95. [PMID: 34784802 DOI: 10.2217/bmm-2021-0348] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
19 Leite AOF, Bento Torres Neto J, Dos Reis RR, Sobral LL, de Souza ACP, Trévia N, de Oliveira RB, Lins NAA, Diniz DG, Diniz JAP, Vasconcelos PFDC, Anthony DC, Brites D, Picanço Diniz CW. Unwanted Exacerbation of the Immune Response in Neurodegenerative Disease: A Time to Review the Impact. Front Cell Neurosci 2021;15:749595. [PMID: 34744633 DOI: 10.3389/fncel.2021.749595] [Reference Citation Analysis]
20 Rincon-Arevalo H, Aue A, Ritter J, Szelinski F, Khadzhynov D, Zickler D, Stefanski L, Lino AC, Körper S, Eckardt KU, Schrezenmeier H, Dörner T, Schrezenmeier EV. Altered increase in STAT1 expression and phosphorylation in severe COVID-19. Eur J Immunol 2021. [PMID: 34676541 DOI: 10.1002/eji.202149575] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
21 Wu L, Boer K, Woud WW, Udomkarnjananun S, Hesselink DA, Baan CC. Urinary Extracellular Vesicles Are a Novel Tool to Monitor Allograft Function in Kidney Transplantation: A Systematic Review. Int J Mol Sci 2021;22:10499. [PMID: 34638835 DOI: 10.3390/ijms221910499] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
22 Gasparello J, d'Aversa E, Breveglieri G, Borgatti M, Finotti A, Gambari R. In vitro induction of interleukin-8 by SARS-CoV-2 Spike protein is inhibited in bronchial epithelial IB3-1 cells by a miR-93-5p agomiR. Int Immunopharmacol 2021;101:108201. [PMID: 34653729 DOI: 10.1016/j.intimp.2021.108201] [Cited by in Crossref: 4] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
23 Rincon-arevalo H, Aue A, Ritter J, Szelinski F, Khadzhynov D, Zickler D, Stefanski L, Lino AC, Körper S, Eckardt K, Schrezenmeier H, Dörner T, Schrezenmeier EV. Altered increase in STAT1 expression and phosphorylation in severe COVID-19.. [DOI: 10.1101/2021.08.13.21262006] [Reference Citation Analysis]
24 Sepehrinezhad A, Gorji A, Sahab Negah S. SARS-CoV-2 may trigger inflammasome and pyroptosis in the central nervous system: a mechanistic view of neurotropism. Inflammopharmacology 2021;29:1049-59. [PMID: 34241783 DOI: 10.1007/s10787-021-00845-4] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
25 Sindona C, Schepici G, Contestabile V, Bramanti P, Mazzon E. NOX2 Activation in COVID-19: Possible Implications for Neurodegenerative Diseases. Medicina (Kaunas) 2021;57:604. [PMID: 34208136 DOI: 10.3390/medicina57060604] [Cited by in Crossref: 8] [Cited by in F6Publishing: 11] [Article Influence: 4.0] [Reference Citation Analysis]