BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Davidov V, Jensen G, Mai S, Chen SH, Pan PY. Analyzing One Cell at a TIME: Analysis of Myeloid Cell Contributions in the Tumor Immune Microenvironment. Front Immunol 2020;11:1842. [PMID: 32983100 DOI: 10.3389/fimmu.2020.01842] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
Number Citing Articles
1 Dossou A, Sabnis N, Kapic A, Fudala R, Lacko AG. High-Density Lipoproteins and Cancer, with an Emphasis on Their Role in Immunotherapy. Handbook of Cancer and Immunology 2023. [DOI: 10.1007/978-3-030-80962-1_111-1] [Reference Citation Analysis]
2 Drouin M, Saenz J, Gauttier V, Evrard B, Teppaz G, Pengam S, Mary C, Desselle A, Thepenier V, Wilhelm E, Merieau E, Ligeron C, Girault I, Lopez M, Fourgeux C, Sinha D, Baccelli I, Moreau A, Louvet C, Josien R, Poschmann J, Poirier N, Chiffoleau E. CLEC-1 is a death sensor that limits antigen cross-presentation by dendritic cells and represents a target for cancer immunotherapy. Sci Adv 2022;8. [DOI: 10.1126/sciadv.abo7621] [Reference Citation Analysis]
3 Sánchez-león ML, Jiménez-cortegana C, Cabrera G, Vermeulen EM, de la Cruz-merino L, Sánchez-margalet V. The effects of dendritic cell-based vaccines in the tumor microenvironment: Impact on myeloid-derived suppressor cells. Front Immunol 2022;13. [DOI: 10.3389/fimmu.2022.1050484] [Reference Citation Analysis]
4 Burai S, Kovács R, Molnár T, Tóth M, Szendi-Szatmári T, Jenei V, Bíró-Debreceni Z, Brisco S, Balázs M, Bácsi A, Koncz G, Mázló A. Comprehensive analysis of different tumor cell-line produced soluble mediators on the differentiation and functional properties of monocyte-derived dendritic cells. PLoS One 2022;17:e0274056. [PMID: 36194602 DOI: 10.1371/journal.pone.0274056] [Reference Citation Analysis]
5 Shao Y, Fan X, Yang X, Li S, Huang L, Zhou X, Zhang S, Zheng M, Sun J. Cuproptosis is correlated with clinical status, tumor immune microenvironment and immunotherapy in colorectal cancer: a multi-omic analysis.. [DOI: 10.1101/2022.09.12.507555] [Reference Citation Analysis]
6 Mackenzie NJ, Nicholls C, Templeton AR, Perera MP, Jeffery PL, Zimmermann K, Kulasinghe A, Kenna TJ, Vela I, Williams ED, Thomas PB. Modelling the tumor immune microenvironment for precision immunotherapy. Clin & Trans Imm 2022;11. [DOI: 10.1002/cti2.1400] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Niu Y, Chen J, Qiao Y. Epigenetic Modifications in Tumor-Associated Macrophages: A New Perspective for an Old Foe. Front Immunol 2022;13:836223. [DOI: 10.3389/fimmu.2022.836223] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
8 Scherer SD, Riggio AI, Haroun F, DeRose YS, Ekiz HA, Fujita M, Toner J, Zhao L, Li Z, Oesterreich S, Samatar AA, Welm AL. An immune-humanized patient-derived xenograft model of estrogen-independent, hormone receptor positive metastatic breast cancer. Breast Cancer Res 2021;23:100. [PMID: 34717714 DOI: 10.1186/s13058-021-01476-x] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
9 Boisson A, Noël G, Saiselet M, Rodrigues-Vitória J, Thomas N, Fontsa ML, Sofronii D, Naveaux C, Duvillier H, Craciun L, Larsimont D, Awada A, Detours V, Willard-Gallo K, Garaud S. Fluorescent Multiplex Immunohistochemistry Coupled With Other State-Of-The-Art Techniques to Systematically Characterize the Tumor Immune Microenvironment. Front Mol Biosci 2021;8:673042. [PMID: 34621785 DOI: 10.3389/fmolb.2021.673042] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
10 Melo CM, Vidotto T, Chaves LP, Lautert-Dutra W, Reis RBD, Squire JA. The Role of Somatic Mutations on the Immune Response of the Tumor Microenvironment in Prostate Cancer. Int J Mol Sci 2021;22:9550. [PMID: 34502458 DOI: 10.3390/ijms22179550] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
11 Sun P, Zhang X, Wang RJ, Ma QY, Xu L, Wang Y, Liao HP, Wang HL, Hu LD, Kong X, Ding J, Meng LH. PI3Kα inhibitor CYH33 triggers antitumor immunity in murine breast cancer by activating CD8+T cells and promoting fatty acid metabolism. J Immunother Cancer 2021;9:e003093. [PMID: 34373258 DOI: 10.1136/jitc-2021-003093] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
12 Monferrer E, Sanegre S, Vieco-Martí I, López-Carrasco A, Fariñas F, Villatoro A, Abanades S, Mañes S, de la Cruz-Merino L, Noguera R, Álvaro Naranjo T. Immunometabolism Modulation in Therapy. Biomedicines 2021;9:798. [PMID: 34356862 DOI: 10.3390/biomedicines9070798] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
13 Kumar V, Giacomantonio MA, Gujar S. Role of Myeloid Cells in Oncolytic Reovirus-Based Cancer Therapy. Viruses 2021;13:654. [PMID: 33920168 DOI: 10.3390/v13040654] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
14 Tøndell A, Subbannayya Y, Wahl SGF, Flatberg A, Sørhaug S, Børset M, Haug M. Analysis of Intra-Tumoral Macrophages and T Cells in Non-Small Cell Lung Cancer (NSCLC) Indicates a Role for Immune Checkpoint and CD200-CD200R Interactions. Cancers (Basel) 2021;13:1788. [PMID: 33918618 DOI: 10.3390/cancers13081788] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
15 Frosch J, Leontari I, Anderson J. Combined Effects of Myeloid Cells in the Neuroblastoma Tumor Microenvironment. Cancers (Basel) 2021;13:1743. [PMID: 33917501 DOI: 10.3390/cancers13071743] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
16 Kimm MA, Klenk C, Alunni-Fabbroni M, Kästle S, Stechele M, Ricke J, Eisenblätter M, Wildgruber M. Tumor-Associated Macrophages-Implications for Molecular Oncology and Imaging. Biomedicines 2021;9:374. [PMID: 33918295 DOI: 10.3390/biomedicines9040374] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.5] [Reference Citation Analysis]
17 Mojsilovic S, Mojsilovic SS, Bjelica S, Santibanez JF. Transforming growth factor-beta1 and myeloid-derived suppressor cells: A cancerous partnership. Dev Dyn 2021. [PMID: 33797140 DOI: 10.1002/dvdy.339] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 2.0] [Reference Citation Analysis]
18 Mattei F, Andreone S, Mencattini A, De Ninno A, Businaro L, Martinelli E, Schiavoni G. Oncoimmunology Meets Organs-on-Chip. Front Mol Biosci 2021;8:627454. [PMID: 33842539 DOI: 10.3389/fmolb.2021.627454] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 4.5] [Reference Citation Analysis]
19 Zheng-lin B, O’reilly EM. Immune Landscape of Pancreas Ductal Adenocarcinoma: Current Therapeutic Strategies and Future Perspective. Cancer Immunotherapy 2021. [DOI: 10.1007/13905_2021_8] [Reference Citation Analysis]