BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Takamura S. Niches for the Long-Term Maintenance of Tissue-Resident Memory T Cells. Front Immunol. 2018;9:1214. [PMID: 29904388 DOI: 10.3389/fimmu.2018.01214] [Cited by in Crossref: 67] [Cited by in F6Publishing: 70] [Article Influence: 16.8] [Reference Citation Analysis]
Number Citing Articles
1 Swaims-kohlmeier A, Wein AN, Hardnett FP, Sheth AN, Li ZT, Williams ME, Radzio-basu J, Zheng H, Dinh C, Haddad LB, Collins EM, Lobby JL, Kost K, Hayward SL, Ofotokun I, Antia R, Scharer CD, Lowen AC, Garcia-lerma JG, Kohlmeier JE. Memory CD4 T cell subset organization in the female reproductive tract is regulated via the menstrual cycle through CCR5 signaling.. [DOI: 10.1101/2022.10.01.510445] [Reference Citation Analysis]
2 Blauvelt A. Resident Memory T Cells in Psoriasis: Key to a Cure? Journal of Psoriasis and Psoriatic Arthritis 2022;7:157-159. [DOI: 10.1177/24755303221127338] [Reference Citation Analysis]
3 Zhang M, Li N, He Y, Shi T, Jie Z. Pulmonary resident memory T cells in respiratory virus infection and their inspiration on therapeutic strategies. Front Immunol 2022;13:943331. [DOI: 10.3389/fimmu.2022.943331] [Reference Citation Analysis]
4 Watanabe R, Hashimoto M. Vasculitogenic T Cells in Large Vessel Vasculitis. Front Immunol 2022;13:923582. [DOI: 10.3389/fimmu.2022.923582] [Reference Citation Analysis]
5 Li P, Zhang Y, Xu Y, Cao H, Li L, Xiao H. Characteristics of CD8+ and CD4+ Tissue-Resident Memory Lymphocytes in the Gastrointestinal Tract. Advanced Gut & Microbiome Research 2022;2022:1-12. [DOI: 10.1155/2022/9157455] [Cited by in Crossref: 10] [Cited by in F6Publishing: 13] [Article Influence: 10.0] [Reference Citation Analysis]
6 Mackerracher A, Sommershof A, Groettrup M. PLGA particle vaccination elicits resident memory CD8 T cells protecting from tumors and infection. European Journal of Pharmaceutical Sciences 2022. [DOI: 10.1016/j.ejps.2022.106209] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
7 Mou Y, Du Y, Zhou L, Yue J, Hu X, Liu Y, Chen S, Lin X, Zhang G, Xiao H, Dong B. Gut Microbiota Interact With the Brain Through Systemic Chronic Inflammation: Implications on Neuroinflammation, Neurodegeneration, and Aging. Front Immunol 2022;13:796288. [PMID: 35464431 DOI: 10.3389/fimmu.2022.796288] [Cited by in Crossref: 7] [Cited by in F6Publishing: 6] [Article Influence: 7.0] [Reference Citation Analysis]
8 Emery A, Moore S, Turner JE, Campbell JP. Reframing How Physical Activity Reduces The Incidence of Clinically-Diagnosed Cancers: Appraising Exercise-Induced Immuno-Modulation As An Integral Mechanism. Front Oncol 2022;12:788113. [PMID: 35359426 DOI: 10.3389/fonc.2022.788113] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
9 Muñoz-ruiz M, Llorian M, D’antuono R, Pavlova A, Mavrigiannaki AM, Mckenzie D, García-cassani B, Iannitto ML, Jandke A, Ushakov DS, Hayday AC. Tissue-intrinsic γδ T cells critically regulate Tissue-Resident Memory CD8 T cells.. [DOI: 10.1101/2022.01.19.476598] [Reference Citation Analysis]
10 Wang Y, Wang L, Fu C, Wang X, Zuo S, Shu C, Shan Y, He J, Zhou Q, Li W, Yang Y, Hu Z, Hua S. Exploration of Human Lung-Resident Immunity and Response to Respiratory Viral Immunization in a Humanized Mouse Model. J I 2022;208:420-428. [DOI: 10.4049/jimmunol.2100122] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 2.0] [Reference Citation Analysis]
11 Govindarajah V, Reynaud D. Role of the Hematopoietic Stem Cells in Immunological Memory. Curr Stem Cell Rep. [DOI: 10.1007/s40778-021-00204-7] [Reference Citation Analysis]
12 Nelson SA, Sant AJ. Potentiating Lung Mucosal Immunity Through Intranasal Vaccination. Front Immunol 2021;12:808527. [PMID: 34970279 DOI: 10.3389/fimmu.2021.808527] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
13 Watanabe A, Yamashita K, Fujita M, Arimoto A, Nishi M, Takamura S, Saito M, Yamada K, Agawa K, Mukoyama T, Ando M, Kanaji S, Matsuda T, Oshikiri T, Kakeji Y. Vaccine Based on Dendritic Cells Electroporated with an Exogenous Ovalbumin Protein and Pulsed with Invariant Natural Killer T Cell Ligands Effectively Induces Antigen-Specific Antitumor Immunity. Cancers (Basel) 2021;14:171. [PMID: 35008335 DOI: 10.3390/cancers14010171] [Reference Citation Analysis]
14 Lai Y, Wei X, Ye T, Hang L, Mou L, Su J. Interrelation Between Fibroblasts and T Cells in Fibrosing Interstitial Lung Diseases. Front Immunol 2021;12:747335. [PMID: 34804029 DOI: 10.3389/fimmu.2021.747335] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
15 Iwanaga N, Chen K, Yang H, Lu S, Hoffmann JP, Wanek A, McCombs JE, Song K, Rangel-Moreno J, Norton EB, Kolls JK. Vaccine-driven lung TRM cells provide immunity against Klebsiella via fibroblast IL-17R signaling. Sci Immunol 2021;6:eabf1198. [PMID: 34516780 DOI: 10.1126/sciimmunol.abf1198] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
16 Son YM, Sun J. Co-Ordination of Mucosal B Cell and CD8 T Cell Memory by Tissue-Resident CD4 Helper T Cells. Cells 2021;10:2355. [PMID: 34572004 DOI: 10.3390/cells10092355] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 5.0] [Reference Citation Analysis]
17 Bemark M, Angeletti D. Know your enemy or find your friend?-Induction of IgA at mucosal surfaces. Immunol Rev 2021;303:83-102. [PMID: 34331314 DOI: 10.1111/imr.13014] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 9.0] [Reference Citation Analysis]
18 Nelson SA, Dileepan T, Rasley A, Jenkins MK, Fischer NO, Sant AJ. Intranasal Nanoparticle Vaccination Elicits a Persistent, Polyfunctional CD4 T Cell Response in the Murine Lung Specific for a Highly Conserved Influenza Virus Antigen That Is Sufficient To Mediate Protection from Influenza Virus Challenge. J Virol 2021;95:e0084121. [PMID: 34076479 DOI: 10.1128/JVI.00841-21] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 6.0] [Reference Citation Analysis]
19 Barreto de Albuquerque J, Mueller C, Gungor B. Tissue-Resident T Cells in Chronic Relapsing-Remitting Intestinal Disorders. Cells 2021;10:1882. [PMID: 34440651 DOI: 10.3390/cells10081882] [Reference Citation Analysis]
20 Connor RI, Brickley EB, Wieland-Alter WF, Ackerman ME, Weiner JA, Modlin JF, Bandyopadhyay AS, Wright PF. Mucosal immunity to poliovirus. Mucosal Immunol 2021. [PMID: 34239028 DOI: 10.1038/s41385-021-00428-0] [Cited by in Crossref: 8] [Cited by in F6Publishing: 10] [Article Influence: 8.0] [Reference Citation Analysis]
21 Slamanig SA, Nolte MA. The Bone Marrow as Sanctuary for Plasma Cells and Memory T-Cells: Implications for Adaptive Immunity and Vaccinology. Cells 2021;10:1508. [PMID: 34203839 DOI: 10.3390/cells10061508] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 4.0] [Reference Citation Analysis]
22 Nur Husna SM, Tan HT, Md Shukri N, Mohd Ashari NS, Wong KK. Nasal Epithelial Barrier Integrity and Tight Junctions Disruption in Allergic Rhinitis: Overview and Pathogenic Insights. Front Immunol 2021;12:663626. [PMID: 34093555 DOI: 10.3389/fimmu.2021.663626] [Cited by in Crossref: 17] [Cited by in F6Publishing: 18] [Article Influence: 17.0] [Reference Citation Analysis]
23 Gu HJ, Song S, Roh JY, Jung Y, Kim HJ. Expression pattern of tissue-resident memory T cells in cutaneous lupus erythematosus. Lupus 2021;30:1427-37. [PMID: 34013817 DOI: 10.1177/09612033211017218] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
24 Toh JWT, Ferguson AL, Spring KJ, Mahajan H, Palendira U. Cytotoxic CD8+ T cells and tissue resident memory cells in colorectal cancer based on microsatellite instability and BRAF status. World J Clin Oncol 2021; 12(4): 238-248 [PMID: 33959477 DOI: 10.5306/wjco.v12.i4.238] [Cited by in CrossRef: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
25 Hirahara K, Kokubo K, Aoki A, Kiuchi M, Nakayama T. The Role of CD4+ Resident Memory T Cells in Local Immunity in the Mucosal Tissue - Protection Versus Pathology. Front Immunol 2021;12:616309. [PMID: 33968018 DOI: 10.3389/fimmu.2021.616309] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
26 Topham DJ, DeDiego ML, Nogales A, Sangster MY, Sant A. Immunity to Influenza Infection in Humans. Cold Spring Harb Perspect Med 2021;11:a038729. [PMID: 31871226 DOI: 10.1101/cshperspect.a038729] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 6.0] [Reference Citation Analysis]
27 Muñoz-Atienza E, Díaz-Rosales P, Tafalla C. Systemic and Mucosal B and T Cell Responses Upon Mucosal Vaccination of Teleost Fish. Front Immunol 2020;11:622377. [PMID: 33664735 DOI: 10.3389/fimmu.2020.622377] [Cited by in Crossref: 11] [Cited by in F6Publishing: 12] [Article Influence: 11.0] [Reference Citation Analysis]
28 Stein JV, Ruef N, Wissmann S. Organ-Specific Surveillance and Long-Term Residency Strategies Adapted by Tissue-Resident Memory CD8+ T Cells. Front Immunol 2021;12:626019. [PMID: 33659008 DOI: 10.3389/fimmu.2021.626019] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 1.0] [Reference Citation Analysis]
29 van de Wall S, Badovinac VP, Harty JT. Influenza-Specific Lung-Resident Memory CD8+ T Cells. Cold Spring Harb Perspect Biol 2021;13:a037978. [PMID: 33288540 DOI: 10.1101/cshperspect.a037978] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 4.0] [Reference Citation Analysis]
30 Knight FC, Wilson JT. Engineering Vaccines for Tissue-Resident Memory T Cells. Adv Ther (Weinh) 2021;4:2000230. [PMID: 33997268 DOI: 10.1002/adtp.202000230] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 8.0] [Reference Citation Analysis]
31 Joag V, Wijeyesinghe S, Stolley JM, Quarnstrom CF, Dileepan T, Soerens AG, Sangala JA, O'Flanagan SD, Gavil NV, Hong SW, Bhela S, Gangadhara S, Weyu E, Matchett WE, Thiede J, Krishna V, Cheeran MC, Bold TD, Amara R, Southern P, Hart GT, Schifanella L, Vezys V, Jenkins MK, Langlois RA, Masopust D. Cutting Edge: Mouse SARS-CoV-2 Epitope Reveals Infection and Vaccine-Elicited CD8 T Cell Responses. J Immunol 2021;206:931-5. [PMID: 33441437 DOI: 10.4049/jimmunol.2001400] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 18.0] [Reference Citation Analysis]
32 Han J, Khatwani N, Searles TG, Turk MJ, Angeles CV. Memory CD8+ T cell responses to cancer. Semin Immunol 2020;49:101435. [PMID: 33272898 DOI: 10.1016/j.smim.2020.101435] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 15.5] [Reference Citation Analysis]
33 Iwanaga N, Kolls JK. Spelunking in Sputum: Single-Cell RNA Sequencing Sheds New Insights into Cystic Fibrosis. Am J Respir Crit Care Med 2020;202:1336-7. [PMID: 32721178 DOI: 10.1164/rccm.202006-2456ED] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
34 Hosio M, Jaks V, Lagus H, Vuola J, Ogawa R, Kankuri E. Primary Ciliary Signaling in the Skin-Contribution to Wound Healing and Scarring. Front Cell Dev Biol 2020;8:578384. [PMID: 33282860 DOI: 10.3389/fcell.2020.578384] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 3.5] [Reference Citation Analysis]
35 Kaveh DA, Garcia-Pelayo MC, Bull NC, Sanchez-Cordon PJ, Spiropoulos J, Hogarth PJ. Airway delivery of both a BCG prime and adenoviral boost drives CD4 and CD8 T cells into the lung tissue parenchyma. Sci Rep 2020;10:18703. [PMID: 33127956 DOI: 10.1038/s41598-020-75734-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
36 Takamura S. Divergence of Tissue-Memory T Cells: Distribution and Function-Based Classification. Cold Spring Harb Perspect Biol 2020;12:a037762. [PMID: 32816841 DOI: 10.1101/cshperspect.a037762] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 2.5] [Reference Citation Analysis]
37 Takamura S. Impact of multiple hits with cognate antigen on memory CD8+ T-cell fate. Int Immunol 2020;32:571-81. [PMID: 32506114 DOI: 10.1093/intimm/dxaa039] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
38 Chu KL, Batista NV, Girard M, Watts TH. Monocyte-Derived Cells in Tissue-Resident Memory T Cell Formation. J Immunol 2020;204:477-85. [PMID: 31964721 DOI: 10.4049/jimmunol.1901046] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
39 Morris SE, Farber DL, Yates AJ. Tissue-Resident Memory T Cells in Mice and Humans: Towards a Quantitative Ecology. J Immunol 2019;203:2561-9. [PMID: 31685700 DOI: 10.4049/jimmunol.1900767] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 3.5] [Reference Citation Analysis]
40 Akbaba H. Resident Memory T Cells. Cells of the Immune System 2020. [DOI: 10.5772/intechopen.90334] [Reference Citation Analysis]
41 Ronchese F, Hilligan KL, Mayer JU. Dendritic cells and the skin environment. Curr Opin Immunol 2020;64:56-62. [PMID: 32387901 DOI: 10.1016/j.coi.2020.03.006] [Cited by in Crossref: 8] [Cited by in F6Publishing: 6] [Article Influence: 4.0] [Reference Citation Analysis]
42 Sant AJ. The Way Forward: Potentiating Protective Immunity to Novel and Pandemic Influenza Through Engagement of Memory CD4 T Cells. J Infect Dis 2019;219:S30-7. [PMID: 30715376 DOI: 10.1093/infdis/jiy666] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
43 Russell-Goldman E, Murphy GF. The Pathobiology of Skin Aging: New Insights into an Old Dilemma. Am J Pathol 2020;190:1356-69. [PMID: 32246919 DOI: 10.1016/j.ajpath.2020.03.007] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 15.0] [Reference Citation Analysis]
44 Muruganandah V, Sathkumara HD, Pai S, Rush CM, Brosch R, Waardenberg AJ, Kupz A. A systematic approach to simultaneously evaluate safety, immunogenicity, and efficacy of novel tuberculosis vaccination strategies. Sci Adv 2020;6:eaaz1767. [PMID: 32181361 DOI: 10.1126/sciadv.aaz1767] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
45 Allie SR, Randall TD. Resident Memory B Cells. Viral Immunol 2020;33:282-93. [PMID: 32023188 DOI: 10.1089/vim.2019.0141] [Cited by in Crossref: 20] [Cited by in F6Publishing: 22] [Article Influence: 10.0] [Reference Citation Analysis]
46 Khalil S, Bardawil T, Kurban M, Abbas O. Tissue-resident memory T cells in the skin. Inflamm Res. 2020;69:245-254. [PMID: 31989191 DOI: 10.1007/s00011-020-01320-6] [Cited by in Crossref: 20] [Cited by in F6Publishing: 23] [Article Influence: 10.0] [Reference Citation Analysis]
47 Pérez-Jeldres T, Tyler CJ, Boyer JD, Karuppuchamy T, Bamias G, Dulai PS, Boland BS, Sandborn WJ, Patel DR, Rivera-Nieves J. Cell Trafficking Interference in Inflammatory Bowel Disease: Therapeutic Interventions Based on Basic Pathogenesis Concepts. Inflamm Bowel Dis 2019;25:270-82. [PMID: 30165490 DOI: 10.1093/ibd/izy269] [Cited by in Crossref: 30] [Cited by in F6Publishing: 33] [Article Influence: 15.0] [Reference Citation Analysis]
48 McCright JC, Maisel K. Engineering drug delivery systems to overcome mucosal barriers for immunotherapy and vaccination. Tissue Barriers 2020;8:1695476. [PMID: 31775577 DOI: 10.1080/21688370.2019.1695476] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
49 Knight FC, Gilchuk P, Kumar A, Becker KW, Sevimli S, Jacobson ME, Suryadevara N, Wang-Bishop L, Boyd KL, Crowe JE Jr, Joyce S, Wilson JT. Mucosal Immunization with a pH-Responsive Nanoparticle Vaccine Induces Protective CD8+ Lung-Resident Memory T Cells. ACS Nano 2019;13:10939-60. [PMID: 31553872 DOI: 10.1021/acsnano.9b00326] [Cited by in Crossref: 52] [Cited by in F6Publishing: 58] [Article Influence: 17.3] [Reference Citation Analysis]
50 Goplen NP, Huang S, Zhu B, Cheon IS, Son YM, Wang Z, Li C, Dai Q, Jiang L, Sun J. Tissue-Resident Macrophages Limit Pulmonary CD8 Resident Memory T Cell Establishment. Front Immunol 2019;10:2332. [PMID: 31681267 DOI: 10.3389/fimmu.2019.02332] [Cited by in Crossref: 23] [Cited by in F6Publishing: 23] [Article Influence: 7.7] [Reference Citation Analysis]
51 Takamura S, Kato S, Motozono C, Shimaoka T, Ueha S, Matsuo K, Miyauchi K, Masumoto T, Katsushima A, Nakayama T, Tomura M, Matsushima K, Kubo M, Miyazawa M. Interstitial-resident memory CD8+ T cells sustain frontline epithelial memory in the lung. J Exp Med 2019;216:2736-47. [PMID: 31558614 DOI: 10.1084/jem.20190557] [Cited by in Crossref: 41] [Cited by in F6Publishing: 43] [Article Influence: 13.7] [Reference Citation Analysis]
52 Retamal-Díaz A, Covián C, Pacheco GA, Castiglione-Matamala AT, Bueno SM, González PA, Kalergis AM. Contribution of Resident Memory CD8+ T Cells to Protective Immunity Against Respiratory Syncytial Virus and Their Impact on Vaccine Design. Pathogens 2019;8:E147. [PMID: 31514485 DOI: 10.3390/pathogens8030147] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 4.3] [Reference Citation Analysis]
53 Louis L, Clark M, Wise MC, Glennie N, Wong A, Broderick K, Uzonna J, Weiner DB, Scott P. Intradermal Synthetic DNA Vaccination Generates Leishmania-Specific T Cells in the Skin and Protection against Leishmania major. Infect Immun 2019;87:e00227-19. [PMID: 31182618 DOI: 10.1128/IAI.00227-19] [Cited by in Crossref: 12] [Cited by in F6Publishing: 12] [Article Influence: 4.0] [Reference Citation Analysis]
54 Suarez-Ramirez JE, Chandiran K, Brocke S, Cauley LS. Immunity to Respiratory Infection Is Reinforced Through Early Proliferation of Lymphoid TRM Cells and Prompt Arrival of Effector CD8 T Cells in the Lungs. Front Immunol 2019;10:1370. [PMID: 31258537 DOI: 10.3389/fimmu.2019.01370] [Cited by in Crossref: 10] [Cited by in F6Publishing: 10] [Article Influence: 3.3] [Reference Citation Analysis]
55 Takahashi K, Orito N, Tokunoh N, Inoue N. Current issues regarding the application of recombinant lactic acid bacteria to mucosal vaccine carriers. Appl Microbiol Biotechnol 2019;103:5947-55. [PMID: 31175431 DOI: 10.1007/s00253-019-09912-x] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
56 Cañedo-Dorantes L, Cañedo-Ayala M. Skin Acute Wound Healing: A Comprehensive Review. Int J Inflam 2019;2019:3706315. [PMID: 31275545 DOI: 10.1155/2019/3706315] [Cited by in Crossref: 173] [Cited by in F6Publishing: 195] [Article Influence: 57.7] [Reference Citation Analysis]
57 Altorki NK, Markowitz GJ, Gao D, Port JL, Saxena A, Stiles B, McGraw T, Mittal V. The lung microenvironment: an important regulator of tumour growth and metastasis. Nat Rev Cancer 2019;19:9-31. [PMID: 30532012 DOI: 10.1038/s41568-018-0081-9] [Cited by in Crossref: 378] [Cited by in F6Publishing: 416] [Article Influence: 126.0] [Reference Citation Analysis]
58 Naismith E, Pangrazzi L. The impact of oxidative stress, inflammation, and senescence on the maintenance of immunological memory in the bone marrow in old age. Biosci Rep 2019;39:BSR20190371. [PMID: 31018996 DOI: 10.1042/BSR20190371] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 3.0] [Reference Citation Analysis]
59 Takamura S, Kohlmeier JE. Establishment and Maintenance of Conventional and Circulation-Driven Lung-Resident Memory CD8+ T Cells Following Respiratory Virus Infections. Front Immunol 2019;10:733. [PMID: 31024560 DOI: 10.3389/fimmu.2019.00733] [Cited by in Crossref: 24] [Cited by in F6Publishing: 24] [Article Influence: 8.0] [Reference Citation Analysis]
60 Sun H, Sun C, Xiao W, Sun R. Tissue-resident lymphocytes: from adaptive to innate immunity. Cell Mol Immunol 2019;16:205-15. [PMID: 30635650 DOI: 10.1038/s41423-018-0192-y] [Cited by in Crossref: 61] [Cited by in F6Publishing: 64] [Article Influence: 20.3] [Reference Citation Analysis]
61 Witkowski JM, Fulop T. T-Cell Cycle and Immunosenescence: Role of Aging in the T-Cell Proliferative Behavior and Status Quo Maintenance. Handbook of Immunosenescence 2019. [DOI: 10.1007/978-3-319-64597-1_13-1] [Reference Citation Analysis]
62 Mcmahon-pratt D. Vaccines. Immunoepidemiology 2019. [DOI: 10.1007/978-3-030-25553-4_15] [Reference Citation Analysis]
63 Witkowski JM, Fulop T. T Cell Cycle and Immunosenescence: Role of Aging in the T Cell Proliferative Behavior and Status Quo Maintenance. Handbook of Immunosenescence 2019. [DOI: 10.1007/978-3-319-99375-1_13] [Reference Citation Analysis]
64 Todryk SM. T Cell Memory to Vaccination. Vaccines (Basel) 2018;6:E84. [PMID: 30558246 DOI: 10.3390/vaccines6040084] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
65 Molodtsov A, Turk MJ. Tissue Resident CD8 Memory T Cell Responses in Cancer and Autoimmunity. Front Immunol. 2018;9:2810. [PMID: 30555481 DOI: 10.3389/fimmu.2018.02810] [Cited by in Crossref: 60] [Cited by in F6Publishing: 60] [Article Influence: 15.0] [Reference Citation Analysis]
66 Behr FM, Chuwonpad A, Stark R, van Gisbergen KPJM. Armed and Ready: Transcriptional Regulation of Tissue-Resident Memory CD8 T Cells. Front Immunol 2018;9:1770. [PMID: 30131803 DOI: 10.3389/fimmu.2018.01770] [Cited by in Crossref: 61] [Cited by in F6Publishing: 62] [Article Influence: 15.3] [Reference Citation Analysis]