BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Zolezzi JM, Inestrosa NC. Wnt/TLR Dialog in Neuroinflammation, Relevance in Alzheimer's Disease. Front Immunol 2017;8:187. [PMID: 28286503 DOI: 10.3389/fimmu.2017.00187] [Cited by in Crossref: 22] [Cited by in F6Publishing: 22] [Article Influence: 4.4] [Reference Citation Analysis]
Number Citing Articles
1 Medina MA, Andrade VM, Caracci MO, Avila ME, Verdugo DA, Vargas MF, Ugarte GD, Reyes AE, Opazo C, De Ferrari GV. Wnt/β-catenin signaling stimulates the expression and synaptic clustering of the autism-associated Neuroligin 3 gene. Transl Psychiatry 2018;8:45. [PMID: 29503438 DOI: 10.1038/s41398-018-0093-y] [Cited by in Crossref: 13] [Cited by in F6Publishing: 14] [Article Influence: 3.3] [Reference Citation Analysis]
2 de Oliveira J, Kucharska E, Garcez ML, Rodrigues MS, Quevedo J, Moreno-Gonzalez I, Budni J. Inflammatory Cascade in Alzheimer's Disease Pathogenesis: A Review of Experimental Findings. Cells 2021;10:2581. [PMID: 34685563 DOI: 10.3390/cells10102581] [Reference Citation Analysis]
3 Wang K, Dai X, Zhang C, Cao X, Zhang R, Zhang Z, Huang X, Ren Q. Two Wnt genes regulate the expression levels of antimicrobial peptides during Vibrio infection in Macrobrachium nipponense. Fish Shellfish Immunol 2020;101:225-33. [PMID: 32247046 DOI: 10.1016/j.fsi.2020.03.063] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.5] [Reference Citation Analysis]
4 Huang J, Jiang H, Pan M, Jiang Y, Xie L. Immunopotentiator thymosin alpha-1 attenuates inflammatory pain by modulating the Wnt3a/β-catenin pathway in spinal cord. Neuroreport 2020;31:69-75. [PMID: 31764244 DOI: 10.1097/WNR.0000000000001370] [Cited by in Crossref: 2] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
5 Lindsay CB, Zolezzi JM, Rivera DS, Cisternas P, Bozinovic F, Inestrosa NC. Andrographolide Reduces Neuroinflammation and Oxidative Stress in Aged Octodon degus. Mol Neurobiol 2020;57:1131-45. [DOI: 10.1007/s12035-019-01784-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 2.0] [Reference Citation Analysis]
6 Inestrosa NC, Tapia-Rojas C, Cerpa W, Cisternas P, Zolezzi JM. WNT Signaling Is a Key Player in Alzheimer's Disease. Handb Exp Pharmacol 2021;269:357-82. [PMID: 34486097 DOI: 10.1007/164_2021_532] [Reference Citation Analysis]
7 Vallée A, Vallée JN, Guillevin R, Lecarpentier Y. Riluzole: a therapeutic strategy in Alzheimer's disease by targeting the WNT/β-catenin pathway. Aging (Albany NY) 2020;12:3095-113. [PMID: 32035419 DOI: 10.18632/aging.102830] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 2.5] [Reference Citation Analysis]
8 Frederiksen HR, Haukedal H, Freude K. Cell Type Specific Expression of Toll-Like Receptors in Human Brains and Implications in Alzheimer's Disease. Biomed Res Int 2019;2019:7420189. [PMID: 31396533 DOI: 10.1155/2019/7420189] [Cited by in Crossref: 18] [Cited by in F6Publishing: 18] [Article Influence: 6.0] [Reference Citation Analysis]
9 Jiang Y, Han Q, Zhao H, Zhang J. Promotion of epithelial-mesenchymal transformation by hepatocellular carcinoma-educated macrophages through Wnt2b/β-catenin/c-Myc signaling and reprogramming glycolysis. J Exp Clin Cancer Res 2021;40:13. [PMID: 33407720 DOI: 10.1186/s13046-020-01808-3] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Rostami Z, Khorashadizadeh M, Naseri M. Immunoregulatory properties of mesenchymal stem cells: Micro-RNAs. Immunol Lett 2020;219:34-45. [PMID: 31917251 DOI: 10.1016/j.imlet.2019.12.011] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
11 Kasthuriarachchi TDW, Harasgama JC, Lee S, Kwon H, Wan Q, Lee J. Cytosolic β-catenin is involved in macrophage M2 activation and antiviral defense in teleosts: Delineation through molecular characterization of β-catenin homolog from redlip mullet (Planiliza haematocheila). Fish Shellfish Immunol 2021:S1050-4648(21)00199-6. [PMID: 34284111 DOI: 10.1016/j.fsi.2021.07.010] [Reference Citation Analysis]
12 Wang H, Chen MH, Chen W, Zhang JG, Qin SC. Roles and mechanisms of phospholipid transfer protein in the development of Alzheimer's disease. Psychogeriatrics 2021;21:659-67. [PMID: 33851473 DOI: 10.1111/psyg.12685] [Reference Citation Analysis]
13 Garcez ML, Mina F, Bellettini-santos T, da Luz AP, Schiavo GL, Macieski JMC, Medeiros EB, Marques AO, Magnus NQ, Budni J. The Involvement of NLRP3 on the Effects of Minocycline in an AD-Like Pathology Induced by β-Amyloid Oligomers Administered to Mice. Mol Neurobiol 2019;56:2606-17. [DOI: 10.1007/s12035-018-1211-9] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 3.3] [Reference Citation Analysis]
14 Parca L, Truglio M, Biagini T, Castellana S, Petrizzelli F, Capocefalo D, Jordán F, Carella M, Mazza T. Pyntacle: a parallel computing-enabled framework for large-scale network biology analysis. Gigascience 2020;9:giaa115. [PMID: 33084878 DOI: 10.1093/gigascience/giaa115] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
15 Wang G, Li Z, Li S, Ren J, Suresh V, Xu D, Zang W, Liu X, Li W, Wang H, Guo F. Minocycline Preserves the Integrity and Permeability of BBB by Altering the Activity of DKK1-Wnt Signaling in ICH Model. Neuroscience 2019;415:135-46. [PMID: 31344398 DOI: 10.1016/j.neuroscience.2019.06.038] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
16 Zolezzi JM, Lindsay CB, Serrano FG, Ureta RC, Theoduloz C, Schmeda-Hirschmann G, Inestrosa NC. Neuroprotective Effects of Ferruginol, Jatrophone, and Junicedric Acid Against Amyloid-β Injury in Hippocampal Neurons. J Alzheimers Dis 2018;63:705-23. [PMID: 29660932 DOI: 10.3233/JAD-170701] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.7] [Reference Citation Analysis]
17 Jeong A, Suazo KF, Wood WG, Distefano MD, Li L. Isoprenoids and protein prenylation: implications in the pathogenesis and therapeutic intervention of Alzheimer's disease. Crit Rev Biochem Mol Biol 2018;53:279-310. [PMID: 29718780 DOI: 10.1080/10409238.2018.1458070] [Cited by in Crossref: 42] [Cited by in F6Publishing: 38] [Article Influence: 14.0] [Reference Citation Analysis]
18 Nakao Y, Fukuda T, Zhang Q, Sanui T, Shinjo T, Kou X, Chen C, Liu D, Watanabe Y, Hayashi C, Yamato H, Yotsumoto K, Tanaka U, Taketomi T, Uchiumi T, Le AD, Shi S, Nishimura F. Exosomes from TNF-α-treated human gingiva-derived MSCs enhance M2 macrophage polarization and inhibit periodontal bone loss. Acta Biomater 2021;122:306-24. [PMID: 33359765 DOI: 10.1016/j.actbio.2020.12.046] [Cited by in Crossref: 50] [Cited by in F6Publishing: 36] [Article Influence: 50.0] [Reference Citation Analysis]
19 Fei YX, Zhu JP, Zhao B, Yin QY, Fang WR, Li YM. XQ-1H regulates Wnt/GSK3β/β-catenin pathway and ameliorates the integrity of blood brain barrier in mice with acute ischemic stroke. Brain Res Bull 2020;164:269-88. [PMID: 32916221 DOI: 10.1016/j.brainresbull.2020.08.032] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
20 Abdi J, Rashedi I, Keating A. Concise Review: TLR Pathway-miRNA Interplay in Mesenchymal Stromal Cells: Regulatory Roles and Therapeutic Directions. Stem Cells 2018;36:1655-62. [PMID: 30171669 DOI: 10.1002/stem.2902] [Cited by in Crossref: 18] [Cited by in F6Publishing: 16] [Article Influence: 4.5] [Reference Citation Analysis]
21 Aghaizu ND, Jin H, Whiting PJ. Dysregulated Wnt Signalling in the Alzheimer's Brain. Brain Sci 2020;10:E902. [PMID: 33255414 DOI: 10.3390/brainsci10120902] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 1.5] [Reference Citation Analysis]
22 Zhang Q, Yu J, Chen Q, Yan H, Du H, Luo W. Regulation of pathophysiological and tissue regenerative functions of MSCs mediated via the WNT signaling pathway (Review). Mol Med Rep 2021;24:648. [PMID: 34278470 DOI: 10.3892/mmr.2021.12287] [Reference Citation Analysis]