BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Pawig L, Klasen C, Weber C, Bernhagen J, Noels H. Diversity and Inter-Connections in the CXCR4 Chemokine Receptor/Ligand Family: Molecular Perspectives. Front Immunol 2015;6:429. [PMID: 26347749 DOI: 10.3389/fimmu.2015.00429] [Cited by in Crossref: 99] [Cited by in F6Publishing: 109] [Article Influence: 14.1] [Reference Citation Analysis]
Number Citing Articles
1 Brandhofer M, Hoffmann A, Blanchet X, Siminkovitch E, Rohlfing AK, El Bounkari O, Nestele JA, Bild A, Kontos C, Hille K, Rohde V, Fröhlich A, Golemi J, Gokce O, Krammer C, Scheiermann P, Tsilimparis N, Sachs N, Kempf WE, Maegdefessel L, Otabil MK, Megens RTA, Ippel H, Koenen RR, Luo J, Engelmann B, Mayo KH, Gawaz M, Kapurniotu A, Weber C, von Hundelshausen P, Bernhagen J. Heterocomplexes between the atypical chemokine MIF and the CXC-motif chemokine CXCL4L1 regulate inflammation and thrombus formation. Cell Mol Life Sci 2022;79:512. [PMID: 36094626 DOI: 10.1007/s00018-022-04539-0] [Reference Citation Analysis]
2 De Leo F, Rossi A, De Marchis F, Cigana C, Melessike M, Quilici G, De Fino I, Mantonico MV, Fabris C, Bragonzi A, Bianchi ME, Musco G. Pamoic acid is an inhibitor of HMGB1·CXCL12 elicited chemotaxis and reduces inflammation in murine models of Pseudomonas aeruginosa pneumonia. Mol Med 2022;28:108. [PMID: 36071400 DOI: 10.1186/s10020-022-00535-z] [Reference Citation Analysis]
3 Duval V, Alayrac P, Silvestre J, Levoye A. Emerging Roles of the Atypical Chemokine Receptor 3 (ACKR3) in Cardiovascular Diseases. Front Endocrinol 2022;13:906586. [DOI: 10.3389/fendo.2022.906586] [Reference Citation Analysis]
4 Romero-Molina S, Ruiz-Blanco YB, Mieres-Perez J, Harms M, Münch J, Ehrmann M, Sanchez-Garcia E. PPI-Affinity: A Web Tool for the Prediction and Optimization of Protein-Peptide and Protein-Protein Binding Affinity. J Proteome Res 2022. [PMID: 35654412 DOI: 10.1021/acs.jproteome.2c00020] [Reference Citation Analysis]
5 Ma X, Wang Y, Wu P, Kang M, Hong Y, Xue Y, Chen C, Li H, Fang Y. Case Report: A Novel CXCR4 Mutation in a Chinese Child With Kawasaki Disease Causing WHIM Syndrome. Front Immunol 2022;13:857527. [PMID: 35493524 DOI: 10.3389/fimmu.2022.857527] [Reference Citation Analysis]
6 Liu Q, Sun W, Zhang H. Roles and new Insights of Macrophages in the Tumor Microenvironment of Thyroid Cancer. Front Pharmacol 2022;13:875384. [DOI: 10.3389/fphar.2022.875384] [Reference Citation Analysis]
7 Ma H, Li M, Pagare PP, Wang H, Nassehi N, Santos EJ, Stevens Negus S, Selley DE, Zhang Y. Novel bivalent ligands carrying potential antinociceptive effects by targeting putative mu opioid receptor and chemokine receptor CXCR4 heterodimers. Bioorganic Chemistry 2022;120:105641. [DOI: 10.1016/j.bioorg.2022.105641] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
8 Sadri F, Rezaei Z, Fereidouni M. The significance of the SDF-1/CXCR4 signaling pathway in the normal development. Mol Biol Rep 2022. [PMID: 35067815 DOI: 10.1007/s11033-021-07069-3] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
9 Nugraha AP, Kitaura H, Ohori F, Pramusita A, Ogawa S, Noguchi T, Marahleh A, Nara Y, Kinjo R, Mizoguchi I. C‑X‑C receptor 7 agonist acts as a C‑X‑C motif chemokine ligand 12 inhibitor to ameliorate osteoclastogenesis and bone resorption. Mol Med Rep 2022;25:78. [PMID: 35014674 DOI: 10.3892/mmr.2022.12594] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
10 Pelanda R, Greaves SA, Alves da Costa T, Cedrone LM, Campbell ML, Torres RM. B-cell intrinsic and extrinsic signals that regulate central tolerance of mouse and human B cells. Immunol Rev 2022. [PMID: 34997597 DOI: 10.1111/imr.13062] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
11 Mo H, Ren Q, Song D, Xu B, Zhou D, Hong X, Hou FF, Zhou L, Liu Y. CXCR4 induces podocyte injury and proteinuria by activating β-catenin signaling. Theranostics 2022;12:767-81. [PMID: 34976212 DOI: 10.7150/thno.65948] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 2.0] [Reference Citation Analysis]
12 Fang X, Meng Q, Zhang H, Fang X, Huang LS, Zhang X, Schooley RT, Ciechanover A, An J, Xu Y, Huang Z. A fragment integrational approach to GPCR inhibition: Identification of a high affinity small molecule CXCR4 antagonist. European Journal of Medicinal Chemistry 2022. [DOI: 10.1016/j.ejmech.2022.114150] [Reference Citation Analysis]
13 Schottelius M, Herrmann K, Lapa C. In Vivo Targeting of CXCR4-New Horizons. Cancers (Basel) 2021;13:5920. [PMID: 34885030 DOI: 10.3390/cancers13235920] [Cited by in F6Publishing: 6] [Reference Citation Analysis]
14 Schall N, Daubeuf F, Marsol C, Gizzi P, Frossard N, Bonnet D, Galzi JL, Muller S. A Selective Neutraligand for CXCL12/SDF-1α With Beneficial Regulatory Functions in MRL/Lpr Lupus Prone Mice. Front Pharmacol 2021;12:752194. [PMID: 34744730 DOI: 10.3389/fphar.2021.752194] [Reference Citation Analysis]
15 Rindler K, Jonak C, Alkon N, Thaler FM, Kurz H, Shaw LE, Stingl G, Weninger W, Halbritter F, Bauer WM, Farlik M, Brunner PM. Single-cell RNA sequencing reveals markers of disease progression in primary cutaneous T-cell lymphoma. Mol Cancer 2021;20:124. [PMID: 34583709 DOI: 10.1186/s12943-021-01419-2] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
16 Fuess LE, Weber JN, den Haan S, Steinel NC, Shim KC, Bolnick DI. Between-population differences in constitutive and infection-induced gene expression in threespine stickleback. Mol Ecol 2021. [PMID: 34582586 DOI: 10.1111/mec.16197] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
17 Sokkar P, Harms M, Stürzel C, Gilg A, Kizilsavas G, Raasholm M, Preising N, Wagner M, Kirchhoff F, Ständker L, Weidinger G, Mayer B, Münch J, Sanchez-Garcia E. Computational modeling and experimental validation of the EPI-X4/CXCR4 complex allows rational design of small peptide antagonists. Commun Biol 2021;4:1113. [PMID: 34552197 DOI: 10.1038/s42003-021-02638-5] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
18 Nickoloff-Bybel EA, Festa L, Meucci O, Gaskill PJ. Co-receptor signaling in the pathogenesis of neuroHIV. Retrovirology 2021;18:24. [PMID: 34429135 DOI: 10.1186/s12977-021-00569-x] [Cited by in F6Publishing: 3] [Reference Citation Analysis]
19 Álamo P, Cedano J, Conchillo-Sole O, Cano-Garrido O, Alba-Castellon L, Serna N, Aviñó A, Carrasco-Diaz LM, Sánchez-Chardi A, Martinez-Torró C, Gallardo A, Cano M, Eritja R, Villaverde A, Mangues R, Vazquez E, Unzueta U. Rational engineering of a human GFP-like protein scaffold for humanized targeted nanomedicines. Acta Biomater 2021;130:211-22. [PMID: 34116228 DOI: 10.1016/j.actbio.2021.06.001] [Cited by in Crossref: 4] [Cited by in F6Publishing: 2] [Article Influence: 4.0] [Reference Citation Analysis]
20 Britton C, Poznansky MC, Reeves P. Polyfunctionality of the CXCR4/CXCL12 axis in health and disease: Implications for therapeutic interventions in cancer and immune-mediated diseases. FASEB J 2021;35:e21260. [PMID: 33715207 DOI: 10.1096/fj.202001273R] [Cited by in Crossref: 2] [Cited by in F6Publishing: 11] [Article Influence: 2.0] [Reference Citation Analysis]
21 Hess A, Derlin T, Koenig T, Diekmann J, Wittneben A, Wang Y, Wester HJ, Ross TL, Wollert KC, Bauersachs J, Bengel FM, Thackeray JT. Molecular imaging-guided repair after acute myocardial infarction by targeting the chemokine receptor CXCR4. Eur Heart J 2020;41:3564-75. [PMID: 32901270 DOI: 10.1093/eurheartj/ehaa598] [Cited by in Crossref: 14] [Cited by in F6Publishing: 24] [Article Influence: 14.0] [Reference Citation Analysis]
22 Li S, Liu S, Jiang Z, Feng L, Gao Y, Chen Y, Xu A, Huang W, Zhang N, Sun H. Study on the promotion of lymphocytes in patients with COVID-19 by broad-spectrum chemokine receptor inhibitor vMIP-II and its Mechanism of signal transmission in vitro. Signal Transduct Target Ther 2021;6:104. [PMID: 33654055 DOI: 10.1038/s41392-021-00516-4] [Reference Citation Analysis]
23 Iking J, Staniszewska M, Kessler L, Klose JM, Lückerath K, Fendler WP, Herrmann K, Rischpler C. Imaging Inflammation with Positron Emission Tomography. Biomedicines 2021;9:212. [PMID: 33669804 DOI: 10.3390/biomedicines9020212] [Cited by in F6Publishing: 7] [Reference Citation Analysis]
24 Li S, Li X, Xie X, Wei X, Yu C, Cheung CW, Xia Z, Tian G, Sugawara A. N-Acetylcysteine Attenuates Hyperalgesia in Rats with Diabetic Neuropathic Pain: Role of Oxidative Stress and Inflammatory Mediators and CXCR4. Journal of Diabetes Research 2021;2021:1-10. [DOI: 10.1155/2021/8862910] [Reference Citation Analysis]
25 Loveless R, Shay C, Teng Y. Unveiling Tumor Microenvironment Interactions Using Zebrafish Models. Front Mol Biosci 2020;7:611847. [PMID: 33521055 DOI: 10.3389/fmolb.2020.611847] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
26 Liang GQ, Liu J, Zhou XX, Lin ZX, Chen T, Chen G, Wei H. Anti-CXCR4 Single-Chain Variable Fragment Antibodies Have Anti-Tumor Activity. Front Oncol 2020;10:571194. [PMID: 33392074 DOI: 10.3389/fonc.2020.571194] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 1.0] [Reference Citation Analysis]
27 Yahya I, Morosan-Puopolo G, Brand-Saberi B. The CXCR4/SDF-1 Axis in the Development of Facial Expression and Non-somitic Neck Muscles. Front Cell Dev Biol 2020;8:615264. [PMID: 33415110 DOI: 10.3389/fcell.2020.615264] [Cited by in F6Publishing: 2] [Reference Citation Analysis]
28 De Leo F, Quilici G, De Marchis F, Mantonico MV, Bianchi ME, Musco G. Discovery of 5,5'-Methylenedi-2,3-Cresotic Acid as a Potent Inhibitor of the Chemotactic Activity of the HMGB1·CXCL12 Heterocomplex Using Virtual Screening and NMR Validation. Front Chem 2020;8:598710. [PMID: 33324614 DOI: 10.3389/fchem.2020.598710] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 0.5] [Reference Citation Analysis]
29 Kaiser LM, Hunter ZR, Treon SP, Buske C. CXCR4 in Waldenström's Macroglobulinema: chances and challenges. Leukemia 2021;35:333-45. [PMID: 33273682 DOI: 10.1038/s41375-020-01102-3] [Cited by in Crossref: 4] [Cited by in F6Publishing: 12] [Article Influence: 2.0] [Reference Citation Analysis]
30 Krammer C, Kontos C, Dewor M, Hille K, Dalla Volta B, El Bounkari O, Taş K, Sinitski D, Brandhofer M, Megens RTA, Weber C, Schultz JR, Bernhagen J, Kapurniotu A. A MIF-Derived Cyclopeptide that Inhibits MIF Binding and Atherogenic Signaling via the Chemokine Receptor CXCR2. Chembiochem 2021;22:1012-9. [PMID: 33125165 DOI: 10.1002/cbic.202000574] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
31 Plair A, Bennington J, Williams JK, Parker-Autry C, Matthews CA, Badlani G. Regenerative medicine for anal incontinence: a review of regenerative therapies beyond cells. Int Urogynecol J 2021;32:2337-47. [PMID: 33247762 DOI: 10.1007/s00192-020-04620-x] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
32 Li J, Chen H, Zhang D, Xie J, Zhou X. The role of stromal cell-derived factor 1 on cartilage development and disease. Osteoarthritis Cartilage 2021;29:313-22. [PMID: 33253889 DOI: 10.1016/j.joca.2020.10.010] [Cited by in F6Publishing: 8] [Reference Citation Analysis]
33 Kontos C, El Bounkari O, Krammer C, Sinitski D, Hille K, Zan C, Yan G, Wang S, Gao Y, Brandhofer M, Megens RTA, Hoffmann A, Pauli J, Asare Y, Gerra S, Bourilhon P, Leng L, Eckstein HH, Kempf WE, Pelisek J, Gokce O, Maegdefessel L, Bucala R, Dichgans M, Weber C, Kapurniotu A, Bernhagen J. Designed CXCR4 mimic acts as a soluble chemokine receptor that blocks atherogenic inflammation by agonist-specific targeting. Nat Commun 2020;11:5981. [PMID: 33239628 DOI: 10.1038/s41467-020-19764-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 12] [Article Influence: 2.5] [Reference Citation Analysis]
34 Hou J, Wang C, Ma D, Chen Y, Jin H, An Y, Jia J, Huang L, Zhao H. The cardioprotective and anxiolytic effects of Chaihujialonggumuli granule on rats with anxiety after acute myocardial infarction is partly mediated by suppression of CXCR4/NF-κB/GSDMD pathway. Biomed Pharmacother 2021;133:111015. [PMID: 33232924 DOI: 10.1016/j.biopha.2020.111015] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
35 Niu L, Yang W, Duan L, Wang X, Li Y, Xu C, Liu C, Zhang Y, Zhou W, Liu J, Zhao Q, Han Y, Hong L, Fan D. Biological functions and theranostic potential of HMGB family members in human cancers. Ther Adv Med Oncol 2020;12:1758835920970850. [PMID: 33224279 DOI: 10.1177/1758835920970850] [Cited by in Crossref: 4] [Cited by in F6Publishing: 8] [Article Influence: 2.0] [Reference Citation Analysis]
36 Li L, Chai Y, Wu C, Zhao L. Chemokine receptor CXCR4: An important player affecting the molecular-targeted drugs commonly used in hematological malignancies. Expert Rev Hematol 2020;13:1387-96. [PMID: 33170753 DOI: 10.1080/17474086.2020.1839885] [Cited by in Crossref: 1] [Article Influence: 0.5] [Reference Citation Analysis]
37 Hess A, Thackeray JT, Wollert KC, Bengel FM. Radionuclide Image-Guided Repair of the Heart. JACC: Cardiovascular Imaging 2020;13:2415-29. [DOI: 10.1016/j.jcmg.2019.11.007] [Cited by in Crossref: 10] [Cited by in F6Publishing: 14] [Article Influence: 5.0] [Reference Citation Analysis]
38 Álamo P, Pallarès V, Céspedes MV, Falgàs A, Sanchez JM, Serna N, Sánchez-García L, Voltà-Duràn E, Morris GA, Sánchez-Chardi A, Casanova I, Mangues R, Vazquez E, Villaverde A, Unzueta U. Fluorescent Dye Labeling Changes the Biodistribution of Tumor-Targeted Nanoparticles. Pharmaceutics 2020;12:E1004. [PMID: 33105866 DOI: 10.3390/pharmaceutics12111004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
39 Harms M, Gilg A, Ständker L, Beer AJ, Mayer B, Rasche V, Gruber CW, Münch J. Microtiter plate-based antibody-competition assay to determine binding affinities and plasma/blood stability of CXCR4 ligands. Sci Rep 2020;10:16036. [PMID: 32994431 DOI: 10.1038/s41598-020-73012-4] [Cited by in Crossref: 2] [Cited by in F6Publishing: 6] [Article Influence: 1.0] [Reference Citation Analysis]
40 Bozza MT, Lintomen L, Kitoko JZ, Paiva CN, Olsen PC. The Role of MIF on Eosinophil Biology and Eosinophilic Inflammation. Clin Rev Allergy Immunol 2020;58:15-24. [PMID: 30680604 DOI: 10.1007/s12016-019-08726-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 21] [Article Influence: 7.0] [Reference Citation Analysis]
41 Bianchi ME, Mezzapelle R. The Chemokine Receptor CXCR4 in Cell Proliferation and Tissue Regeneration. Front Immunol 2020;11:2109. [PMID: 32983169 DOI: 10.3389/fimmu.2020.02109] [Cited by in Crossref: 14] [Cited by in F6Publishing: 45] [Article Influence: 7.0] [Reference Citation Analysis]
42 Milanesi S, Locati M, Borroni EM. Aberrant CXCR4 Signaling at Crossroad of WHIM Syndrome and Waldenstrom's Macroglobulinemia. Int J Mol Sci 2020;21:E5696. [PMID: 32784523 DOI: 10.3390/ijms21165696] [Cited by in Crossref: 2] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
43 MacDonald L, Jenkins J, Purvis G, Lee J, Franco AT. The Thyroid Tumor Microenvironment: Potential Targets for Therapeutic Intervention and Prognostication. Horm Cancer 2020;11:205-17. [PMID: 32548798 DOI: 10.1007/s12672-020-00390-6] [Cited by in Crossref: 6] [Cited by in F6Publishing: 12] [Article Influence: 3.0] [Reference Citation Analysis]
44 Elwazir MY, Bois JP, Abouezzeddine OF, Chareonthaitawee P. Imaging cardiac sarcoidosis and infiltrative diseases: diagnosis and therapeutic response. Q J Nucl Med Mol Imaging 2020;64. [DOI: 10.23736/s1824-4785.20.03235-5] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
45 Liu Y, Feng Q, Miao J, Wu Q, Zhou S, Shen W, Feng Y, Hou FF, Liu Y, Zhou L. C-X-C motif chemokine receptor 4 aggravates renal fibrosis through activating JAK/STAT/GSK3β/β-catenin pathway. J Cell Mol Med 2020;24:3837-55. [PMID: 32119183 DOI: 10.1111/jcmm.14973] [Cited by in Crossref: 5] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
46 Ito N, Sakamoto K, Hikichi C, Matsusaka T, Nagata M. Biphasic MIF and SDF1 expression during podocyte injury promote CD44-mediated glomerular parietal cell migration in focal segmental glomerulosclerosis. Am J Physiol Renal Physiol 2020;318:F741-53. [PMID: 32068458 DOI: 10.1152/ajprenal.00414.2019] [Cited by in Crossref: 4] [Cited by in F6Publishing: 6] [Article Influence: 2.0] [Reference Citation Analysis]
47 Kircher M, Lapa C. Infection and Inflammation Imaging: Beyond FDG. PET Clin 2020;15:215-29. [PMID: 32145892 DOI: 10.1016/j.cpet.2019.11.004] [Cited by in Crossref: 3] [Cited by in F6Publishing: 6] [Article Influence: 1.5] [Reference Citation Analysis]
48 Xiang Y, Li Y, Yang L, He Y, Jia D, Hu X. miR-142-5p as a CXCR4-Targeted MicroRNA Attenuates SDF-1-Induced Chondrocyte Apoptosis and Cartilage Degradation via Inactivating MAPK Signaling Pathway. Biochem Res Int 2020;2020:4508108. [PMID: 32047668 DOI: 10.1155/2020/4508108] [Cited by in Crossref: 3] [Cited by in F6Publishing: 8] [Article Influence: 1.5] [Reference Citation Analysis]
49 Xu F, Li MY, Chen J. D-dopachrome tautomerase from Japanese sea bass ( Lateolabrax japonicus) is a chemokine-like cytokine and functional homolog of macrophage migration inhibitory factor. Zool Res 2020;41:39-50. [PMID: 31709785 DOI: 10.24272/j.issn.2095-8137.2020.003] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.5] [Reference Citation Analysis]
50 Sinitski D, Gruner K, Brandhofer M, Kontos C, Winkler P, Reinstädler A, Bourilhon P, Xiao Z, Cool R, Kapurniotu A, Dekker FJ, Panstruga R, Bernhagen J. Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. Journal of Biological Chemistry 2020;295:850-67. [DOI: 10.1016/s0021-9258(17)49940-6] [Cited by in Crossref: 5] [Cited by in F6Publishing: 1] [Article Influence: 2.5] [Reference Citation Analysis]
51 Reinecke BA, Kang G, Zheng Y, Obeng S, Zhang H, Selley DE, An J, Zhang Y. Design and synthesis of a bivalent probe targeting the putative mu opioid receptor and chemokine receptor CXCR4 heterodimer. RSC Med Chem 2020;11:125-31. [PMID: 33479612 DOI: 10.1039/c9md00433e] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.3] [Reference Citation Analysis]
52 Sinitski D, Gruner K, Brandhofer M, Kontos C, Winkler P, Reinstädler A, Bourilhon P, Xiao Z, Cool R, Kapurniotu A, Dekker FJ, Panstruga R, Bernhagen J. Cross-kingdom mimicry of the receptor signaling and leukocyte recruitment activity of a human cytokine by its plant orthologs. J Biol Chem 2020;295:850-67. [PMID: 31811089 DOI: 10.1074/jbc.RA119.009716] [Cited by in Crossref: 1] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
53 Shen L, Yuan Y, Guo Y, Li M, Li C, Pu X. Probing the Druggablility on the Interface of the Protein-Protein Interaction and Its Allosteric Regulation Mechanism on the Drug Screening for the CXCR4 Homodimer. Front Pharmacol 2019;10:1310. [PMID: 31787895 DOI: 10.3389/fphar.2019.01310] [Cited by in Crossref: 4] [Cited by in F6Publishing: 5] [Article Influence: 1.3] [Reference Citation Analysis]
54 Soppert J, Kraemer S, Beckers C, Averdunk L, Möllmann J, Denecke B, Goetzenich A, Marx G, Bernhagen J, Stoppe C. Soluble CD74 Reroutes MIF/CXCR4/AKT-Mediated Survival of Cardiac Myofibroblasts to Necroptosis. J Am Heart Assoc 2018;7:e009384. [PMID: 30371153 DOI: 10.1161/JAHA.118.009384] [Cited by in Crossref: 21] [Cited by in F6Publishing: 30] [Article Influence: 7.0] [Reference Citation Analysis]
55 Rani A, Dasgupta P, Murphy JJ. Prostate Cancer. The American Journal of Pathology 2019;189:2119-37. [DOI: 10.1016/j.ajpath.2019.07.007] [Cited by in Crossref: 22] [Cited by in F6Publishing: 35] [Article Influence: 7.3] [Reference Citation Analysis]
56 Zhou W, Guo S, Liu M, Burow ME, Wang G. Targeting CXCL12/CXCR4 Axis in Tumor Immunotherapy. Curr Med Chem 2019;26:3026-41. [PMID: 28875842 DOI: 10.2174/0929867324666170830111531] [Cited by in Crossref: 43] [Cited by in F6Publishing: 74] [Article Influence: 14.3] [Reference Citation Analysis]
57 Suttisintong K, Kaewchangwat N, Thanayupong E, Nerungsi C, Srikun O, Pungpo P. Recent Progress in the Development of HIV-1 Entry Inhibitors: From Small Molecules to Potent Anti-HIV Agents. CTMC 2019;19:1599-620. [DOI: 10.2174/1568026619666190712204050] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
58 Cheng WL, Kao YH, Chen YC, Lin YK, Chen SA, Chen YJ. Macrophage migration inhibitory factor increases atrial arrhythmogenesis through CD74 signaling. Transl Res 2020;216:43-56. [PMID: 31669150 DOI: 10.1016/j.trsl.2019.10.002] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.3] [Reference Citation Analysis]
59 Michelet C, Danchin EGJ, Jaouannet M, Bernhagen J, Panstruga R, Kogel KH, Keller H, Coustau C. Cross-Kingdom Analysis of Diversity, Evolutionary History, and Site Selection within the Eukaryotic Macrophage Migration Inhibitory Factor Superfamily. Genes (Basel) 2019;10:E740. [PMID: 31554205 DOI: 10.3390/genes10100740] [Cited by in Crossref: 8] [Cited by in F6Publishing: 8] [Article Influence: 2.7] [Reference Citation Analysis]
60 Nieto-Fontarigo JJ, González-Barcala FJ, San José E, Arias P, Nogueira M, Salgado FJ. CD26 and Asthma: a Comprehensive Review. Clin Rev Allergy Immunol 2019;56:139-60. [PMID: 27561663 DOI: 10.1007/s12016-016-8578-z] [Cited by in Crossref: 20] [Cited by in F6Publishing: 26] [Article Influence: 6.7] [Reference Citation Analysis]
61 Levy E, Reger R, Segerberg F, Lambert M, Leijonhufvud C, Baumer Y, Carlsten M, Childs R. Enhanced Bone Marrow Homing of Natural Killer Cells Following mRNA Transfection With Gain-of-Function Variant CXCR4R334X. Front Immunol 2019;10:1262. [PMID: 31231387 DOI: 10.3389/fimmu.2019.01262] [Cited by in Crossref: 21] [Cited by in F6Publishing: 27] [Article Influence: 7.0] [Reference Citation Analysis]
62 Righetti A, Giulietti M, Šabanović B, Occhipinti G, Principato G, Piva F. CXCL12 and Its Isoforms: Different Roles in Pancreatic Cancer? J Oncol 2019;2019:9681698. [PMID: 31275385 DOI: 10.1155/2019/9681698] [Cited by in Crossref: 13] [Cited by in F6Publishing: 13] [Article Influence: 4.3] [Reference Citation Analysis]
63 Spencer HL, Jover E, Cathery W, Avolio E, Rodriguez-arabaolaza I, Thomas AC, Alvino VV, Sala-newby G, Dang Z, Fagnano M, Reni C, Rowlinson J, Vono R, Spinetti G, Beltrami AP, Gargioli C, Caporali A, Angelini G, Madeddu P. Role of TPBG (Trophoblast Glycoprotein) Antigen in Human Pericyte Migratory and Angiogenic Activity. ATVB 2019;39:1113-24. [DOI: 10.1161/atvbaha.119.312665] [Cited by in Crossref: 3] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
64 Avalos-Navarro G, Muñoz-Valle JF, Daneri-Navarro A, Quintero-Ramos A, Franco-Topete RA, Morán-Mendoza AJ, Oceguera-Villanueva A, Bautista-Herrera LA, Topete-Camacho A, Del Toro-Arreola A. Circulating soluble levels of MIF in women with breast cancer in the molecular subtypes: relationship with Th17 cytokine profile. Clin Exp Med 2019;19:385-91. [PMID: 31102004 DOI: 10.1007/s10238-019-00559-6] [Cited by in Crossref: 11] [Cited by in F6Publishing: 14] [Article Influence: 3.7] [Reference Citation Analysis]
65 Ding Y, Du Y. Clinicopathological significance and prognostic role of chemokine receptor CXCR4 expression in pancreatic ductal adenocarcinoma, a meta-analysis and literature review. International Journal of Surgery 2019;65:32-8. [DOI: 10.1016/j.ijsu.2019.03.009] [Cited by in Crossref: 12] [Cited by in F6Publishing: 16] [Article Influence: 4.0] [Reference Citation Analysis]
66 Noels H, Weber C, Koenen RR. Chemokines as Therapeutic Targets in Cardiovascular Disease: The Road Behind, The Road Ahead. ATVB 2019;39:583-92. [DOI: 10.1161/atvbaha.118.312037] [Cited by in Crossref: 32] [Cited by in F6Publishing: 49] [Article Influence: 10.7] [Reference Citation Analysis]
67 Macoska JA, Wang Z, Virta J, Zacharias N, Bjorling DE. Inhibition of the CXCL12/CXCR4 axis prevents periurethral collagen accumulation and lower urinary tract dysfunction in vivo. Prostate 2019;79:757-67. [PMID: 30811623 DOI: 10.1002/pros.23781] [Cited by in Crossref: 5] [Cited by in F6Publishing: 5] [Article Influence: 1.7] [Reference Citation Analysis]
68 Giordano FA, Link B, Glas M, Herrlinger U, Wenz F, Umansky V, Brown JM, Herskind C. Targeting the Post-Irradiation Tumor Microenvironment in Glioblastoma via Inhibition of CXCL12. Cancers (Basel) 2019;11:E272. [PMID: 30813533 DOI: 10.3390/cancers11030272] [Cited by in Crossref: 7] [Cited by in F6Publishing: 8] [Article Influence: 2.3] [Reference Citation Analysis]
69 Kawaguchi N, Zhang TT, Nakanishi T. Involvement of CXCR4 in Normal and Abnormal Development. Cells 2019;8:E185. [PMID: 30791675 DOI: 10.3390/cells8020185] [Cited by in Crossref: 41] [Cited by in F6Publishing: 57] [Article Influence: 13.7] [Reference Citation Analysis]
70 Kapurniotu A, Gokce O, Bernhagen J. The Multitasking Potential of Alarmins and Atypical Chemokines. Front Med (Lausanne) 2019;6:3. [PMID: 30729111 DOI: 10.3389/fmed.2019.00003] [Cited by in Crossref: 31] [Cited by in F6Publishing: 35] [Article Influence: 10.3] [Reference Citation Analysis]
71 Shin DW, Park SN, Kim SM, Im K, Kim JA, Hong KT, Choi JY, Hong CR, Park KD, Shin HY, Kang HJ, Kim HK, Lee DS. WHIM Syndrome With a Novel CXCR4 Variant in a Korean Child. Ann Lab Med 2017;37:446-9. [PMID: 28643496 DOI: 10.3343/alm.2017.37.5.446] [Cited by in Crossref: 4] [Cited by in F6Publishing: 4] [Article Influence: 1.0] [Reference Citation Analysis]
72 Kim SM, Hwang KA, Go RE, Sung JH, Choi DW, Choi KC. Exposure to cigarette smoke via respiratory system may induce abnormal alterations of reproductive organs in female diabetic rats.Environ Toxicol. 2019;34:13-21. [PMID: 30421503 DOI: 10.1002/tox.22652] [Cited by in Crossref: 4] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
73 Kircher M, Herhaus P, Schottelius M, Buck AK, Werner RA, Wester HJ, Keller U, Lapa C. CXCR4-directed theranostics in oncology and inflammation. Ann Nucl Med 2018;32:503-11. [PMID: 30105558 DOI: 10.1007/s12149-018-1290-8] [Cited by in Crossref: 41] [Cited by in F6Publishing: 54] [Article Influence: 10.3] [Reference Citation Analysis]
74 Heon Lee I, Palombo MS, Zhang X, Szekely Z, Sinko PJ. Design and evaluation of a CXCR4 targeting peptide 4DV3 as an HIV entry inhibitor and a ligand for targeted drug delivery. Eur J Pharm Biopharm 2019;138:11-22. [PMID: 29894816 DOI: 10.1016/j.ejpb.2018.06.004] [Cited by in Crossref: 5] [Cited by in F6Publishing: 3] [Article Influence: 1.3] [Reference Citation Analysis]
75 Bianchi ME, Crippa MP, Manfredi AA, Mezzapelle R, Rovere Querini P, Venereau E. High-mobility group box 1 protein orchestrates responses to tissue damage via inflammation, innate and adaptive immunity, and tissue repair. Immunol Rev 2017;280:74-82. [PMID: 29027228 DOI: 10.1111/imr.12601] [Cited by in Crossref: 130] [Cited by in F6Publishing: 166] [Article Influence: 32.5] [Reference Citation Analysis]
76 Shima K, Kimura K, Ishida M, Kishikawa A, Ogawa S, Qi J, Shen WR, Ohori F, Noguchi T, Marahleh A, Kitaura H. C-X-C Motif Chemokine 12 Enhances Lipopolysaccharide-Induced Osteoclastogenesis and Bone Resorption In Vivo. Calcif Tissue Int 2018;103:431-42. [PMID: 29845409 DOI: 10.1007/s00223-018-0435-z] [Cited by in Crossref: 5] [Cited by in F6Publishing: 6] [Article Influence: 1.3] [Reference Citation Analysis]
77 Trivedi-Parmar V, Robertson MJ, Cisneros JA, Krimmer SG, Jorgensen WL. Optimization of Pyrazoles as Phenol Surrogates to Yield Potent Inhibitors of Macrophage Migration Inhibitory Factor. ChemMedChem 2018;13:1092-7. [PMID: 29575754 DOI: 10.1002/cmdc.201800158] [Cited by in Crossref: 10] [Cited by in F6Publishing: 11] [Article Influence: 2.5] [Reference Citation Analysis]
78 Lacy M, Kontos C, Brandhofer M, Hille K, Gröning S, Sinitski D, Bourilhon P, Rosenberg E, Krammer C, Thavayogarajah T, Pantouris G, Bakou M, Weber C, Lolis E, Bernhagen J, Kapurniotu A. Identification of an Arg-Leu-Arg tripeptide that contributes to the binding interface between the cytokine MIF and the chemokine receptor CXCR4. Sci Rep 2018;8:5171. [PMID: 29581527 DOI: 10.1038/s41598-018-23554-5] [Cited by in Crossref: 24] [Cited by in F6Publishing: 27] [Article Influence: 6.0] [Reference Citation Analysis]
79 Tu R, Peng Y, Wang Y, Tang X, Wang S. The stromal cell-derived factor 1/C-X-C chemokine receptor type 4 axis is important in neutrophil migration caused by cardiopulmonary bypass in children. Interact Cardiovasc Thorac Surg 2018;26:431-7. [PMID: 29106576 DOI: 10.1093/icvts/ivx358] [Cited by in F6Publishing: 1] [Reference Citation Analysis]
80 Poggi A, Varesano S, Zocchi MR. How to Hit Mesenchymal Stromal Cells and Make the Tumor Microenvironment Immunostimulant Rather Than Immunosuppressive. Front Immunol 2018;9:262. [PMID: 29515580 DOI: 10.3389/fimmu.2018.00262] [Cited by in Crossref: 44] [Cited by in F6Publishing: 58] [Article Influence: 11.0] [Reference Citation Analysis]
81 Peng D, Cao B, Zhou YJ, Long YQ. The chemical diversity and structure-based evolution of non-peptide CXCR4 antagonists with diverse therapeutic potential. Eur J Med Chem 2018;149:148-69. [PMID: 29500940 DOI: 10.1016/j.ejmech.2018.02.043] [Cited by in Crossref: 11] [Cited by in F6Publishing: 13] [Article Influence: 2.8] [Reference Citation Analysis]
82 Murphy PM, Heusinkveld L. Multisystem multitasking by CXCL12 and its receptors CXCR4 and ACKR3. Cytokine 2018;109:2-10. [PMID: 29398278 DOI: 10.1016/j.cyto.2017.12.022] [Cited by in Crossref: 34] [Cited by in F6Publishing: 34] [Article Influence: 8.5] [Reference Citation Analysis]
83 Feng Y, Wang J, Yuan Y, Zhang X, Shen M, Yuan F. miR-539-5p inhibits experimental choroidal neovascularization by targeting CXCR7. FASEB J 2018;32:1626-39. [PMID: 29146732 DOI: 10.1096/fj.201700640R] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 2.5] [Reference Citation Analysis]
84 Teixidó J, Martínez-Moreno M, Díaz-Martínez M, Sevilla-Movilla S. The good and bad faces of the CXCR4 chemokine receptor. Int J Biochem Cell Biol 2018;95:121-31. [PMID: 29288743 DOI: 10.1016/j.biocel.2017.12.018] [Cited by in Crossref: 34] [Cited by in F6Publishing: 45] [Article Influence: 6.8] [Reference Citation Analysis]
85 Loveland KL, Klein B, Pueschl D, Indumathy S, Bergmann M, Loveland BE, Hedger MP, Schuppe HC. Cytokines in Male Fertility and Reproductive Pathologies: Immunoregulation and Beyond. Front Endocrinol (Lausanne) 2017;8:307. [PMID: 29250030 DOI: 10.3389/fendo.2017.00307] [Cited by in Crossref: 63] [Cited by in F6Publishing: 81] [Article Influence: 12.6] [Reference Citation Analysis]
86 Högbom M, Ihalin R. Functional and structural characteristics of bacterial proteins that bind host cytokines. Virulence 2017;8:1592-601. [PMID: 28783440 DOI: 10.1080/21505594.2017.1363140] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 0.6] [Reference Citation Analysis]
87 Janssens R, Struyf S, Proost P. The unique structural and functional features of CXCL12. Cell Mol Immunol 2018;15:299-311. [PMID: 29082918 DOI: 10.1038/cmi.2017.107] [Cited by in Crossref: 80] [Cited by in F6Publishing: 121] [Article Influence: 16.0] [Reference Citation Analysis]
88 Nazari A, Khorramdelazad H, Hassanshahi G. Biological/pathological functions of the CXCL12/CXCR4/CXCR7 axes in the pathogenesis of bladder cancer. Int J Clin Oncol 2017;22:991-1000. [PMID: 29022185 DOI: 10.1007/s10147-017-1187-x] [Cited by in Crossref: 26] [Cited by in F6Publishing: 39] [Article Influence: 5.2] [Reference Citation Analysis]
89 Umezawa Y, Akiyama H, Okada K, Ishida S, Nogami A, Oshikawa G, Kurosu T, Miura O. Molecular mechanisms for enhancement of stromal cell-derived factor 1-induced chemotaxis by platelet endothelial cell adhesion molecule 1 (PECAM-1). J Biol Chem 2017;292:19639-55. [PMID: 28974577 DOI: 10.1074/jbc.M117.779603] [Cited by in Crossref: 5] [Cited by in F6Publishing: 7] [Article Influence: 1.0] [Reference Citation Analysis]
90 Albee LJ, Eby JM, Tripathi A, LaPorte HM, Gao X, Volkman BF, Gaponenko V, Majetschak M. α1-Adrenergic Receptors Function Within Hetero-Oligomeric Complexes With Atypical Chemokine Receptor 3 and Chemokine (C-X-C motif) Receptor 4 in Vascular Smooth Muscle Cells. J Am Heart Assoc 2017;6:e006575. [PMID: 28862946 DOI: 10.1161/JAHA.117.006575] [Cited by in Crossref: 16] [Cited by in F6Publishing: 18] [Article Influence: 3.2] [Reference Citation Analysis]
91 Tischner D, Grimm M, Kaur H, Staudenraus D, Carvalho J, Looso M, Günther S, Wanke F, Moos S, Siller N, Breuer J, Schwab N, Zipp F, Waisman A, Kurschus FC, Offermanns S, Wettschureck N. Single-cell profiling reveals GPCR heterogeneity and functional patterning during neuroinflammation. JCI Insight 2017;2:95063. [PMID: 28768912 DOI: 10.1172/jci.insight.95063] [Cited by in Crossref: 8] [Cited by in F6Publishing: 12] [Article Influence: 1.6] [Reference Citation Analysis]
92 Huang X, Wu P, Huang F, Xu M, Chen M, Huang K, Li GP, Xu M, Yao D, Wang L. Baicalin attenuates chronic hypoxia-induced pulmonary hypertension via adenosine A2A receptor-induced SDF-1/CXCR4/PI3K/AKT signaling. J Biomed Sci 2017;24:52. [PMID: 28774332 DOI: 10.1186/s12929-017-0359-3] [Cited by in Crossref: 26] [Cited by in F6Publishing: 33] [Article Influence: 5.2] [Reference Citation Analysis]
93 Kircher M, Lapa C. Novel Noninvasive Nuclear Medicine Imaging Techniques for Cardiac Inflammation. Curr Cardiovasc Imaging Rep 2017;10:6. [PMID: 28357026 DOI: 10.1007/s12410-017-9400-x] [Cited by in Crossref: 25] [Cited by in F6Publishing: 23] [Article Influence: 5.0] [Reference Citation Analysis]
94 Chu T, Shields LBE, Zhang YP, Feng SQ, Shields CB, Cai J. CXCL12/CXCR4/CXCR7 Chemokine Axis in the Central Nervous System: Therapeutic Targets for Remyelination in Demyelinating Diseases. Neuroscientist 2017;23:627-48. [PMID: 29283028 DOI: 10.1177/1073858416685690] [Cited by in Crossref: 26] [Cited by in F6Publishing: 24] [Article Influence: 5.2] [Reference Citation Analysis]
95 Poudel SB, Bhattarai G, Kim J, Kook S, Seo Y, Jeon Y, Lee J. Local delivery of recombinant human FGF7 enhances bone formation in rat mandible defects. J Bone Miner Metab 2017;35:485-96. [DOI: 10.1007/s00774-016-0784-5] [Cited by in Crossref: 10] [Cited by in F6Publishing: 16] [Article Influence: 1.7] [Reference Citation Analysis]
96 Kwon EK, Min CK, Kim Y, Lee JW, Aigerim A, Schmidt S, Nam HJ, Han SK, Kim K, Cha JS, Kim H, Kim S, Cho HS, Choi MS, Cho NH. Constitutive activation of T cells by γ2-herpesviral GPCR through the interaction with cellular CXCR4. Biochim Biophys Acta Mol Cell Res 2017;1864:1-11. [PMID: 27751885 DOI: 10.1016/j.bbamcr.2016.10.008] [Cited by in Crossref: 2] [Cited by in F6Publishing: 3] [Article Influence: 0.3] [Reference Citation Analysis]
97 Ma DM, Luo DX, Zhang J. SDF-1/CXCR7 axis regulates the proliferation, invasion, adhesion, and angiogenesis of gastric cancer cells. World J Surg Oncol. 2016;14:256. [PMID: 27716367 DOI: 10.1186/s12957-016-1009-z] [Cited by in Crossref: 17] [Cited by in F6Publishing: 21] [Article Influence: 2.8] [Reference Citation Analysis]
98 Herrmann MM, Barth S, Greve B, Schumann KM, Bartels A, Weissert R. Identification of gene expression patterns crucially involved in experimental autoimmune encephalomyelitis and multiple sclerosis. Dis Model Mech 2016;9:1211-20. [PMID: 27519689 DOI: 10.1242/dmm.025536] [Cited by in Crossref: 14] [Cited by in F6Publishing: 13] [Article Influence: 2.3] [Reference Citation Analysis]
99 Gabai VL, Yaglom JA, Wang Y, Meng L, Shao H, Kim G, Colvin T, Gestwicki J, Sherman MY. Anticancer Effects of Targeting Hsp70 in Tumor Stromal Cells. Cancer Res 2016;76:5926-32. [PMID: 27503927 DOI: 10.1158/0008-5472.CAN-16-0800] [Cited by in Crossref: 19] [Cited by in F6Publishing: 24] [Article Influence: 3.2] [Reference Citation Analysis]
100 Uchi Y, Takeuchi H, Matsuda S, Saikawa Y, Kawakubo H, Wada N, Takahashi T, Nakamura R, Fukuda K, Omori T, Kitagawa Y. CXCL12 expression promotes esophageal squamous cell carcinoma proliferation and worsens the prognosis. BMC Cancer 2016;16:514. [PMID: 27439769 DOI: 10.1186/s12885-016-2555-z] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 2.3] [Reference Citation Analysis]
101 Pozzobon T, Goldoni G, Viola A, Molon B. CXCR4 signaling in health and disease. Immunol Lett 2016;177:6-15. [PMID: 27363619 DOI: 10.1016/j.imlet.2016.06.006] [Cited by in Crossref: 92] [Cited by in F6Publishing: 111] [Article Influence: 15.3] [Reference Citation Analysis]
102 Bagheri V, Hassanshahi G, Mirzaee V, Khorramdelazad H. CXC chemokine CXCL12 tissue expression and circulating levels in peptic ulcer patients with Helicobacter pylori infection. Cytokine 2016;85:1-4. [PMID: 27269177 DOI: 10.1016/j.cyto.2016.05.025] [Cited by in Crossref: 7] [Cited by in F6Publishing: 7] [Article Influence: 1.2] [Reference Citation Analysis]
103 Polansky H, Javaherian A. 3-Econsystems: MicroRNAs, Receptors, and Latent Viruses; Some Insights Biology Can Gain from Economic Theory. Front Microbiol 2016;7:369. [PMID: 27047480 DOI: 10.3389/fmicb.2016.00369] [Cited by in Crossref: 6] [Cited by in F6Publishing: 8] [Article Influence: 1.0] [Reference Citation Analysis]
104 Parravicini C, Daniele S, Palazzolo L, Trincavelli ML, Martini C, Zaratin P, Primi R, Coppolino G, Gianazza E, Abbracchio MP, Eberini I. A promiscuous recognition mechanism between GPR17 and SDF-1: Molecular insights. Cell Signal 2016;28:631-42. [PMID: 26971834 DOI: 10.1016/j.cellsig.2016.03.001] [Cited by in Crossref: 9] [Cited by in F6Publishing: 9] [Article Influence: 1.5] [Reference Citation Analysis]
105 Christmann RB. Another Piece in the Fibrotic Puzzle: TSLP as a Novel Ligand for Fibrocyte Activation. J Invest Dermatol 2016;136:360-2. [PMID: 26802232 DOI: 10.1016/j.jid.2015.11.014] [Cited by in Crossref: 1] [Cited by in F6Publishing: 1] [Article Influence: 0.2] [Reference Citation Analysis]
106 Tulotta C, Stefanescu C, Beletkaia E, Bussmann J, Tarbashevich K, Schmidt T, Snaar-Jagalska BE. Inhibition of signaling between human CXCR4 and zebrafish ligands by the small molecule IT1t impairs the formation of triple-negative breast cancer early metastases in a zebrafish xenograft model. Dis Model Mech 2016;9:141-53. [PMID: 26744352 DOI: 10.1242/dmm.023275] [Cited by in Crossref: 30] [Cited by in F6Publishing: 28] [Article Influence: 5.0] [Reference Citation Analysis]
107 Vacchini A, Locati M, Borroni EM. Overview and potential unifying themes of the atypical chemokine receptor family. J Leukoc Biol 2016;99:883-92. [PMID: 26740381 DOI: 10.1189/jlb.2MR1015-477R] [Cited by in Crossref: 32] [Cited by in F6Publishing: 30] [Article Influence: 5.3] [Reference Citation Analysis]
108 Wu C, Wang T, Liu C, Lin H, Chen Y, Chen T. Molecular cloning and characterization of orange-spotted grouper (Epinephelus coioides) CXC chemokine ligand 12. Fish & Shellfish Immunology 2015;47:996-1005. [DOI: 10.1016/j.fsi.2015.11.001] [Cited by in Crossref: 8] [Cited by in F6Publishing: 7] [Article Influence: 1.1] [Reference Citation Analysis]
109 Ignatius Irudayam J, Contreras D, Spurka L, Ren S, Kanagavel V, Ramaiah A, Annamalai A, French SW, Klein AS, Funari V, Arumugaswami V. Profile of Inflammation-associated genes during Hepatic Differentiation of Human Pluripotent Stem Cells. Data Brief 2015;5:871-8. [PMID: 26702414 DOI: 10.1016/j.dib.2015.10.023] [Cited by in Crossref: 6] [Cited by in F6Publishing: 4] [Article Influence: 0.9] [Reference Citation Analysis]