BPG is committed to discovery and dissemination of knowledge
Cited by in F6Publishing
For: Fraslin C, Quillet E, Rochat T, Dechamp N, Bernardet JF, Collet B, Lallias D, Boudinot P. Combining Multiple Approaches and Models to Dissect the Genetic Architecture of Resistance to Infections in Fish. Front Genet 2020;11:677. [PMID: 32754193 DOI: 10.3389/fgene.2020.00677] [Cited by in Crossref: 27] [Cited by in F6Publishing: 31] [Article Influence: 9.0] [Reference Citation Analysis]
Number Citing Articles
1 Scholtens M, Dodds K, Walker S, Clarke S, Tate M, Slattery T, Preece M, Arratia L, Symonds J. Opportunities for improving feed efficiency and spinal health in New Zealand farmed Chinook salmon (Oncorhynchus tshawytscha) using genomic information. Aquaculture 2023;563:738936. [DOI: 10.1016/j.aquaculture.2022.738936] [Reference Citation Analysis]
2 Lira LVG, Mastrochirico-Filho VA, Mendes NJ, Ariede RB, Yáñez JM, Hashimoto DT. Genome-wide association study of host resistance to the ectoparasite Ichthyophthirius multifiliis in the Amazon fish Colossoma macropomum. Mol Biol Rep 2023;50:599-607. [PMID: 36367660 DOI: 10.1007/s11033-022-08062-0] [Reference Citation Analysis]
3 Zhu Y, Lechardeur D, Bernardet JF, Kerouault B, Guérin C, Rigaudeau D, Nicolas P, Duchaud E, Rochat T. Two functionally distinct heme/iron transport systems are virulence determinants of the fish pathogen Flavobacterium psychrophilum. Virulence 2022;13:1221-41. [PMID: 35880611 DOI: 10.1080/21505594.2022.2101197] [Cited by in Crossref: 1] [Article Influence: 1.0] [Reference Citation Analysis]
4 Aramburu O, Blanco A, Bouza C, Martínez P. Integration of host-pathogen functional genomics data into the chromosome-level genome assembly of turbot (Scophthalmus maximus). Aquaculture 2022. [DOI: 10.1016/j.aquaculture.2022.739067] [Reference Citation Analysis]
5 Li Z, Fang M, Tang X, Zhang D, Wang Z. Disentangling genetic variation for endurance and resistance to visceral white-nodules disease in large yellow croaker (Larimichthys crocea) using genome information. Aquaculture 2022. [DOI: 10.1016/j.aquaculture.2022.739045] [Reference Citation Analysis]
6 Prchal M, D'ambrosio J, Lagarde H, Lallias D, Patrice P, François Y, Poncet C, Desgranges A, Haffray P, Dupont-nivet M, Phocas F. Genome-wide association study and genomic prediction of tolerance to acute hypoxia in rainbow trout. Aquaculture 2022. [DOI: 10.1016/j.aquaculture.2022.739068] [Reference Citation Analysis]
7 Macchia V, Inami M, Ramstad A, Grammes F, Reeve A, Moen T, Torgersen JS, Adams A, Desbois AP, Hoare R. Immersion challenge model for Flavobacterium psychrophilum infection of Atlantic salmon (Salmo salar L.) fry. J Fish Dis 2022;45:1781-8. [PMID: 36223485 DOI: 10.1111/jfd.13699] [Reference Citation Analysis]
8 Karami AM, Duan Y, Kania PW, Buchmann K. Responses towards eyefluke (Diplostomum pseudospathaceum) in different genetic lineages of rainbow trout. PLoS One 2022;17:e0276895. [PMID: 36301982 DOI: 10.1371/journal.pone.0276895] [Reference Citation Analysis]
9 Houston RD, Kriaridou C, Robledo D. Animal board invited review: Widespread adoption of genetic technologies is key to sustainable expansion of global aquaculture. animal 2022;16:100642. [DOI: 10.1016/j.animal.2022.100642] [Reference Citation Analysis]
10 Zhou Q, Chen Y, Chen Z, Wang L, Ma X, Wang J, Zhang Q, Chen S. Genomics and transcriptomics reveal new molecular mechanism of vibriosis resistance in fish. Front Immunol 2022;13:974604. [DOI: 10.3389/fimmu.2022.974604] [Reference Citation Analysis]
11 Fraslin C, Koskinen H, Nousianen A, Houston RD, Kause A. Genome-wide association and genomic prediction of resistance to Flavobacterium columnare in a farmed rainbow trout population. Aquaculture 2022;557:738332. [DOI: 10.1016/j.aquaculture.2022.738332] [Cited by in Crossref: 3] [Cited by in F6Publishing: 3] [Article Influence: 3.0] [Reference Citation Analysis]
12 Zhang Y, Liu F, Wang F. Combined effects of jujube, Chinese yam and astragalus on digestion, immunity and intestinal microflora of rainbow trout. Aquaculture Research. [DOI: 10.1111/are.15959] [Reference Citation Analysis]
13 Zhu Y, Lechardeur D, Bernardet J, Kerouault B, Guérin C, Rigaudeau D, Nicolas P, Duchaud E, Rochat T. Two functionally distinct heme/iron transport systems are virulence determinants of the fish pathogen Flavobacterium psychrophilum.. [DOI: 10.1101/2022.04.04.486927] [Reference Citation Analysis]
14 Valenza-troubat N, Montanari S, Ritchie P, Wellenreuther M. Unraveling the complex genetic basis of growth in New Zealand silver trevally (Pseudocaranx georgianus). G3 Genes|Genomes|Genetics 2022;12. [DOI: 10.1093/g3journal/jkac016] [Cited by in Crossref: 1] [Cited by in F6Publishing: 2] [Article Influence: 1.0] [Reference Citation Analysis]
15 Fraslin C, Koskinen H, Nousianen A, Houston RD, Kause A. Genome-wide association and genomic prediction of resistance to Flavobacterium columnare in a farmed rainbow trout population.. [DOI: 10.1101/2022.02.28.482244] [Reference Citation Analysis]
16 Yu X, Joshi R, Gjøen HM, Lv Z, Kent M. Construction of Genetic Linkage Maps From a Hybrid Family of Large Yellow Croaker (Larimichthys crocea). Front Genet 2021;12:792666. [PMID: 35047014 DOI: 10.3389/fgene.2021.792666] [Reference Citation Analysis]
17 Fraslin C, Houston RD, Robledo D. Methods for mapping genomic variants associated with production traits in aquaculture species. Cellular and Molecular Approaches in Fish Biology 2022. [DOI: 10.1016/b978-0-12-822273-7.00007-0] [Reference Citation Analysis]
18 Valenza-troubat N, Montanari S, Ritchie P, Wellenreuther M. Unravelling the complex genetic basis of growth in New Zealand silver trevally (Pseudocaranx georgianus).. [DOI: 10.1101/2021.10.11.463933] [Reference Citation Analysis]
19 Barría A, Benzie JAH, Houston RD, De Koning DJ, de Verdal H. Genomic Selection and Genome-wide Association Study for Feed-Efficiency Traits in a Farmed Nile Tilapia (Oreochromis niloticus) Population. Front Genet 2021;12:737906. [PMID: 34616434 DOI: 10.3389/fgene.2021.737906] [Cited by in Crossref: 9] [Cited by in F6Publishing: 10] [Article Influence: 4.5] [Reference Citation Analysis]
20 Marana MH, Karami AM, Ødegård J, Zuo S, Jaafar RM, Mathiessen H, von Gersdorff Jørgensen L, Kania PW, Dalsgaard I, Nielsen T, Buchmann K. Whole-genome association study searching for QTL for Aeromonas salmonicida resistance in rainbow trout. Sci Rep 2021;11:17857. [PMID: 34497310 DOI: 10.1038/s41598-021-97437-7] [Cited by in Crossref: 6] [Cited by in F6Publishing: 7] [Article Influence: 3.0] [Reference Citation Analysis]
21 Barría A, Trịnh TQ, Mahmuddin M, Peñaloza C, Papadopoulou A, Gervais O, Chadag VM, Benzie JAH, Houston RD. A major quantitative trait locus affecting resistance to Tilapia lake virus in farmed Nile tilapia (Oreochromis niloticus). Heredity (Edinb) 2021;127:334-43. [PMID: 34262170 DOI: 10.1038/s41437-021-00447-4] [Cited by in Crossref: 17] [Cited by in F6Publishing: 17] [Article Influence: 8.5] [Reference Citation Analysis]
22 Joshi R, Almeida DB, da Costa AR, Skaarud A, de Pádua Pereira U, Knutsen TM, Moen T, Alvarez AT. Genomic selection for resistance to Francisellosis in commercial Nile tilapia population: Genetic and genomic parameters, correlation with growth rate and predictive ability. Aquaculture 2021;537:736515. [DOI: 10.1016/j.aquaculture.2021.736515] [Cited by in Crossref: 8] [Cited by in F6Publishing: 9] [Article Influence: 4.0] [Reference Citation Analysis]
23 Peñaloza C, Manousaki T, Franch R, Tsakogiannis A, Sonesson AK, Aslam ML, Allal F, Bargelloni L, Houston RD, Tsigenopoulos CS. Development and testing of a combined species SNP array for the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata). Genomics 2021;113:2096-107. [PMID: 33933591 DOI: 10.1016/j.ygeno.2021.04.038] [Cited by in Crossref: 14] [Cited by in F6Publishing: 17] [Article Influence: 7.0] [Reference Citation Analysis]
24 Orbán L, Shen X, Phua N, Varga L. Toward Genome-Based Selection in Asian Seabass: What Can We Learn From Other Food Fishes and Farm Animals? Front Genet 2021;12:506754. [PMID: 33968125 DOI: 10.3389/fgene.2021.506754] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
25 Regan T, Bean TP, Ellis T, Davie A, Carboni S, Migaud H, Houston RD. Genetic improvement technologies to support the sustainable growth of UK aquaculture. Rev Aquacult 2021;13:1958-85. [DOI: 10.1111/raq.12553] [Cited by in Crossref: 12] [Cited by in F6Publishing: 13] [Article Influence: 6.0] [Reference Citation Analysis]
26 Zhang W, Li W, Liu G, Gu L, Ye K, Zhang Y, Li W, Jiang D, Wang Z, Fang M. Evaluation for the effect of low-coverage sequencing on genomic selection in large yellow croaker. Aquaculture 2021;534:736323. [DOI: 10.1016/j.aquaculture.2020.736323] [Cited by in Crossref: 6] [Cited by in F6Publishing: 6] [Article Influence: 3.0] [Reference Citation Analysis]
27 Karami AM, Ødegård J, Marana MH, Zuo S, Jaafar R, Mathiessen H, von Gersdorff Jørgensen L, Kania PW, Dalsgaard I, Nielsen T, Buchmann K. A Major QTL for Resistance to Vibrio anguillarum in Rainbow Trout. Front Genet 2020;11:607558. [PMID: 33447254 DOI: 10.3389/fgene.2020.607558] [Cited by in Crossref: 14] [Cited by in F6Publishing: 16] [Article Influence: 4.7] [Reference Citation Analysis]
28 Peñaloza C, Manousaki T, Franch R, Tsakogiannis A, Sonesson A, Aslam ML, Allal F, Bargelloni L, Houston RD, Tsigenopoulos CS. Development and validation of a combined species SNP array for the European seabass (Dicentrarchus labrax) and gilthead seabream (Sparus aurata).. [DOI: 10.1101/2020.12.17.423305] [Cited by in Crossref: 2] [Cited by in F6Publishing: 2] [Article Influence: 0.7] [Reference Citation Analysis]